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ABSTRACT
Device-free localization of people and objects indoors not
equipped with radios is playing a critical role in many emerg-
ing applications. This paper presents an accurate model-
based device-free localization system LiFS, implemented on
cheap commercial off-the-shelf (COTS) Wi-Fi devices. Un-
like previous COTS device-based work, LiFS is able to lo-
calize a target accurately without offline training. The basic
idea is simple: channel state information (CSI) is sensitive to
a target’s location and by modelling the CSI measurements
of multiple wireless links as a set of power fading based equa-
tions, the target location can be determined. However, due
to rich multipath propagation indoors, the received signal
strength (RSS) or even the fine-grained CSI can not be easily
modelled. We observe that even in a rich multipath environ-
ment, not all subcarriers are affected equally by multipath
reflections. Our pre-processing scheme tries to identify the
subcarriers not affected by multipath. Thus, CSIs on the
“clean” subcarriers can be utilized for accurate localization.
We design, implement and evaluate LiFS with extensive

experiments in three different environments. Without know-
ing the majority transceivers’ locations, LiFS achieves a me-
dian accuracy of 0.5 m and 1.1 m in line-of-sight (LoS) and
non-line-of-sight (NLoS) scenarios respectively, outperform-
ing the state-of-the-art systems. Besides single target lo-
calization, LiFS is able to differentiate two sparsely-located
targets and localize each of them at a high accuracy.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design–Wireless communication
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1. INTRODUCTION
We have witnessed an ever-increasing roll-out of location-

based applications, such as indoor localization [45, 43], shop
navigation [27, 1], augmented reality [29, 11], etc, for which
location information is the key. Most current localization
systems [14, 25, 44, 42], however, require the person to carry
a device (such as a mobile phone), making them a poor fit for
some applications. For instance, in intrusion detection [38,
49], expecting an uncooperative target to carry a device is
not realistic. In elderly care, the aged are reluctant to wear
a wearable device or bring a mobile [20]. As such, device-
free localization without any device attached to the target
has attracted a lot of research efforts recently [2, 46].
Among all the technologies employed for indoor localiza-

tion, Wi-Fi is still considered one of the most promising
schemes due to its ubiquity. Wi-Fi is widely used to con-
nect a wide range of devices, such as mobiles, laptops and
loudspeakers in modern offices and homes. This provides us
a large number of Wi-Fi links around us. Ideally, we want
to passively localize a target with only these existing Wi-Fi
links without any additional infrastructure.
Traditional device-free localization systems (or approaches)

are mainly based on the coarse-grained RSS signatures [49,
32, 5, 22], resulting in a limited localization accuracy [38,
48, 34]. To improve accuracy, fine-grained CSI fingerprint1-
based systems have been proposed recently [40, 47]. In or-
der to achieve a high localization accuracy, these systems
(i) need a comprehensive site survey to build the detailed
fingerprint database, and (ii) require updating the database
from time to time because in a real indoor environment,
the radio-frequency (RF) signals vary due to environmen-
tal changes. The site survey and frequent database update
incur a prohibitively-high human cost, rendering them im-
practical for real-life deployment. These existing systems
also assume that all the transceivers’ locations are known
and remain unchanged. As a result, they will encounter
large localization errors if the locations of transceivers (such
as mobile phones) change, since the change of a Wi-Fi link
would lead to the fingerprints in the database not matching
the measured CSI readings.
On the other hand, raw CSI measurements from COTS

devices can not be directly applied to model a target’s loca-
tion because of strong multipath propagations and hardware

1A fingerprint is a unique feature of the signal related to the
location, such as RSS or CSI.
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noise. Thus, the previous approaches [40, 47] have difficul-
ties employing a unified model to accurately quantify the
relationship between the CSI measurement and the target’s
location. As a result, they require a significant amount of
human efforts to manually build and update a fingerprint
database frequently. If we can quantify the relationship be-
tween the target location and the CSI measurement with
a model, many applications would benefit, bypassing the
labor-intensive training process. In intruder tracking sce-
nario, we can localize the intruders in an unfamiliar scenario
that is not likely to have a pre-obtained fingerprint database.
In this paper, we present LiFS, an accurate model-based

device-free localization system with low human effort. LiFS
does not rely on an exhaustive fingerprint database and
only requires baseline measurements between transceivers.
That is to say, the amount of human efforts for LiFS is very
small compared with measuring or updating the RSS/CSI
signatures at all possible locations in existing fingerprint-
based location systems. Without knowing the locations of
all transceivers, LiFS is able to achieve a high localization
accuracy (sub-meter level), while most existing device-free
localization systems exhibit a coarse accuracy.
To remove the noise on raw CSI measurements, we observe

that not all subcarriers are affected equally by multipaths
even in a rich multipath environment. Consequently, we
introduce a novel CSI pre-processing method to filter out
those subcarriers greatly affected by multipath and hard-
ware noise. After this processing, we can quantify the rela-
tionship between the pre-processed CSI values and a target’s
locations with the help of a power fading model (PFM).2

With such a relationship, LiFS can calculate a target’s loca-
tion without requiring any labor-intensive offline training.
LiFS still faces the challenge that the locations of some

transceivers (such as mobile phones, laptops, etc.) are un-
known, since a target’s location estimate is related to the
transceivers’ locations in the PFM. To address this chal-
lenge, LiFS establishes a set of equations with the help of
the PFM to restrict the locations of both the target and the
transceivers with unknown locations. The key observation
is that the number of unknown transceivers grows linearly
while the number of PFM equations grows in a quadratic
fashion. This implies that with enough Wi-Fi links, the
equation constraints will be sufficient to localize both the
unknown transceivers and the target.
To further illustrate the key concept of LiFS, Fig. 1 shows

a toy example with one target and five transceivers (i.e.,
three APs, one mobile phone and one laptop). We assume
the mobile’s location is unknown, so the total number of
unknowns is four since both the mobile and the target have
two unknown parameters, namely their [x, y] coordinates in
2D space. The total number of Wi-Fi links is six (3 × 2) so
we can establish six PFM equations. Thus there are enough
constraints to localize the target and the mobile phone in
this example.
Although the idea sounds straightforward, it is non-trivial

to solve the PFM equations efficiently due to the complex
non-linear Fresnel integration in PFM [21]. To handle this,
we seek an optimization solution that minimizes the mean
absolute error between the CSI measurements and the PFM-
calculated CSI values. To this end, we use a hybrid approach

2The power fading model [21] describes the relationship be-
tween the power fading, i.e., the CSI amplitude, and the
distances between the target and the two transceivers.

Figure 1: A toy example of localization with LiFS.

that starts with the genetic algorithm [18] by picking an ini-
tial set of solutions3 efficiently without a local minima, and
then refine the solution employing the gradient descent [4]
scheme to reach the final location estimate.
We build a prototype of LiFS employing 11 laptops, each

equipped with an Intel 5300 NIC [8]. Four of them serve
as access points (APs) with the “hostapd” tool [17], and
the rest serve as clients. Note that we do not include the
links between clients as we only assume access to CSI data
from APs. The target to be passively localized is a hu-
man without any device attached. Our experimental results
demonstrate that, even in a challenging situation when the
locations of 6 out of all the 7 clients are unknown, LiFS
achieves a median accuracy of 0.5 m and 1.1 m in LoS and
NLoS scenarios respectively for a single target, outperform-
ing the state-of-the-art systems. For two targets, LiFS can
still localize each individual target accurately when the tar-
gets are 1.8 m apart. Note that passively localizing more
than one target is a well-known challenging problem [48].
Contributions: The main contributions of this paper are
as follows:
1. We propose a novel CSI pre-processing scheme to select

those “clean” subcarriers, which conform to the proposed
model, thus ensure a high localization accuracy even in
rich multipath environment.

2. By modelling the device-free localization problem as a
set of over-determined equations, LiFS does not need to
know the locations of all the transceivers and is able to
determine their locations together with the target.

3. LiFS is implemented on commercial off-the-shelf hard-
ware and extensive experiments demonstrate the effec-
tiveness of the system.

Paper outline: We review the related work in Section 2.
The system overview is described in Section 3. We introduce
the background in Section 4. We describe the pre-processing
scheme and the localization method in Section 5 and Section
6, respectively. The implementation of LiFS is described in
Section 7. LiFS is evaluated and discussed in Section 8 and
Section 9, followed by a conclusion in Section 10.

2. RELATED WORK
There are growing interests in exploring RF for device-free

localization. Compared with camera or infrared based solu-
tions [16, 13], RF-based device-free localization approaches
can work at day and night, and also can penetrate non-
metallic walls [48]. Recently, a lot of fine-grained RF-based

3A solution consists of a vector of all the unknowns, i.e.,
the locations of a target and the transceivers with unknown
locations.
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Figure 2: System overview of LiFS.

localization systems have been proposed, such as Wi-Vi [3],
WiDeo [12], Witrack2.0 [2], mtrack [37], Tadar [46], etc.
These methods, though being able to achieve a high accu-
racy, require dedicated hardware such as USRPs to send
out specialized frequency modulated carrier wave signal [2]
or special purpose device to generate 60 GHz signal [37] or
a customized RFID reader with a tag array [46].
On the other hand, several RSS-based device-free local-

ization systems have been proposed [38, 49, 32, 48, 34],
achieving the goal of low hardware cost for localization as
RSS readings are widely available in commercial off-the-shelf
Wi-Fi devices. However, RSS is inherently a coarse mea-
surement [9] and strong multipath makes the problem even
worse [39]. As such, RSS-based device-free localization tech-
niques have difficulties providing high localization accuracy
in most home/office environments [2, 40].
Compared with RSS, CSI measurements provide more

fine-grained information on each subcarrier with both am-
plitude and phase information for device-free detection and
localization [50, 40, 47]. To localize a target, many sys-
tems utilize the CSI measurements as unique signatures of
a target’s locations [40, 47]. However, these systems suf-
fer from labor-intensive offline training since they need a
comprehensive site survey to build and update the detailed
fingerprint database. LiFS does not need any training ef-
fort, and only requires the baseline measurements between
transceivers which is a very small workload. CSI has also
been employed in gesture and activity recognition systems
[36, 35, 28, 6, 19].
Additionally, most existing device-free localization pro-

posals including RSS-based [38, 49] and CSI-based [40, 47]
rely on the assumption that the locations of all transceivers
are known and unchanged. In reality, this assumption could
be easily violated since users may move their devices. With
enough transceiver pairs, LiFS can determine the locations
of both the unknown transceivers and the target, eliminating
the necessity of knowing all the transceivers’ locations.

3. SYSTEM OVERVIEW
LiFS is a model-based device-free localization system that

can localize a target accurately with low human effort. LiFS
acquires CSI measurements from the existing Wi-Fi infras-
tructure, and assumes the locations of APs are known. LiFS
does not need to know the locations of all the clients (e.g.,
mobiles) involved for locating a target, and can determine
their locations together with the target. LiFS is composed
of the following four modules as shown in Fig. 2:

• CSI Collection Module: Before the target moves into
the monitoring area, LiFS collects a set of CSI measure-
ments (i.e., baseline data) from all the links. LiFS then
acquires another set of CSI measurements from all the

links when a target moves into the area.

• Rough Location Estimation Module: LiFS detects
whether the target is present in the First Fresnel Zone
(FFZ) of a specific link by comparing the currently mea-
sured CSI value with the pre-obtained CSI measurement
(i.e., the baseline data).

• CSI Pre-Processing Module: If the target is located
in FFZ of a specific link, LiFS pre-processes the raw CSI
measurements of this link with the scheme introduced in
Section 5; otherwise, LiFS uses the scheme proposed in
FILA [39] to pre-process the measurements.

• Target Localization Module: For each link, LiFS for-
mulates a PFM equation with the pre-processed CSI mea-
surement. By solving a set of PFM equations formulated
for all the links, LiFS can estimate the target location
accurately as described in Section 6.

In the next few sections, we first introduce some background
information and then provide the technical details.

4. BACKGROUND

4.1 Channel State Information Measurement
Most modern digital radios use OFDM communication

and transmit signals across orthogonal subcarriers at differ-
ent frequencies [23, 26]. Each transmitted symbol X(f) is
modulated on a subcarrier index f , and the received symbol
Y (f) depends on the wireless channel H(f):

Y (f) = H(f)×X(f). (1)

The channel matrix H = {H(f)}f=1,··· ,K is called the chan-
nel state information, where K is the number of subcarri-
ers. Each H(f) = |hf | eJ·θf is a complex value depicting
the changes of the amplitude |hf | and the phase θf between
transmitter and receiver at subcarrier f , where J is the imag-
inary unit. That is to say, the CSI amplitude measures the
power fading of the Wi-Fi link between the transmitter and
the receiver. For each transmission, a group of CSI measure-
ments on K = 30 subcarriers are exported by leveraging a
COTS Intel 5300 NIC with a public driver [9, 8].

4.2 Power Fading Model
To localize a target, we need to understand the effect of

a target’s location on the CSI measurement. Let λ denote
the wavelength of the wireless signal and we use the location
vector C = [x, y] to describe the 2D coordinate. Then, the
coordinates of the transmitter i, receiver j and the target
are referred to as Ci, Cj and Ct, respectively. Then the
wireless link �ij between transmitter i and receiver j has

a length of dij =
√
(Ci − Cj)T (Ci − Cj). Similarly, we can

calculate dit and djt, which are the distances from the target
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Figure 3: CSI measurements in an out-
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Figure 6: Power fading model.

to the transmitter i and the receiver j. According to wireless
communication principles [21], the power fading between the
two transceivers is mainly related to the propagation fading,
diffraction fading and target absorption fading.
Propagation fading: Propagation fading Lij specifies the
attenuation due to propagation of a distance dij between the
transmitter i and the receiver j [21] as follows in dBm:

Lij = 10 log[λ2/(16π2d2
ij)]. (2)

Diffraction fading: Diffraction fading Dijt specifies the
attenuation due to a target located in the First Fresnel Zone
(FFZ) of link �ij [21]. A Fresnel zone is an ellipsoid whose
foci are the transmitter and the receiver, as shown in Fig. 6.
The radius of the circular cross section of the FFZ is given by
r1 =

√
(λ · dit · djt)/dij . The diffraction fading is significant

when a target is located within the FFZ; while the diffraction
fading is very small when the target is far away from the FFZ
[21]. Dijt is a function of the distances from the target to
transmitter i and receiver j, which is given by:

Dijt = 20log

(√
2

2
·
∣∣∣∣
∫ ∞
v

exp(
−J · πz2

2
)dz

∣∣∣∣
)
, (3)

where v = ht
√
2(dit + djt)/(λ · dit · djt) determines the vol-

umes of the diffraction fading, and ht is the target’s effective
height. ht is defined as the distance from the highest point
of the target to the wireless link.
Equation (3) shows that we need to know the effective

height in order to localize the target. Fig. 6 describes an
ideal example where the heights of the two transceivers are
the same. In this case, the effective height is a constant
wherever the target is located. However, the heights of
transceivers will be different in reality. As a result, the ef-
fective height is always changing when a target is located at
different locations. Since the target location is an unknown,
it is impossible to predict the effective height beforehand.
We present our solution to handle this “changing effective
height” problem in Section 6.
Target absorption fading: When a target is located ex-

actly on the LoS path, a link suffers large extra signal at-
tenuation absorbed by the target, which is denoted as At

(At < 0) and is dependent on the target.
Putting things together, when a target is located in the

monitoring area, the power fading between the transmitter
i and the receiver j, i.e., the CSI amplitude4 measurement
Rij , is expressed as below in dBm:

Rij =

⎧⎨
⎩

Lij +Dijt +At + η, LoS, (4)

Lij +Dijt + η, NLoS but still in FFZ, (5)

Lij + η, outside of FFZ, (6)

where η is the measurement noise. “NLoS but still in FFZ”
in Eqn. (5) means that the target is not on the LoS path
but still located in FFZ. We refer Eqn. (4), Eqn. (5) and
Eqn. (6) as the power fading model and rewrite them as
Rij=PFM(Ci, Cj , Ct, ht). For simplicity, we use “CSI” to
represent “CSI amplitude” in the rest of this paper.

5. PRE-PROCESSING CSI MEASUREMENT
For a given deployment setup, the power fading model

shows that the CSI change is only related to a target’s lo-
cation and the effective height when the target is located
inside the FFZ. However, strong multipath reflections and
environmental noise [40, 47] may also affect the CSI change.
We would like to filter out those subcarriers greatly affected
by multipath and noise, thus only retrieving the CSI changes
on the “clean” subcarriers for our location estimate.

5.1 CSI Change in Multipath Environment
To understand the CSI changes in rich multipath envi-

ronment, we conduct experiments in both an outdoor open
space and a typical indoor office room. In each environ-
ment, an AP acts as the transmitter and a laptop equipped
with Intel 5300 NIC is employed as the receiver. We set the
distance between the transmitter and the receiver as 6 m
and place the two transceivers at the same height in order
to eliminate the impact of height difference. In each envi-
ronment, we collect two sets of CSI measurements when a
target is located inside and outside the FFZ, and the results
are shown in Fig. 3 and Fig. 4, respectively.
Fig. 3 illustrates that the CSI amplitudes of all the sub-

carriers are decreased in the open space environment when
a target is located in the FFZ, which is consistent with the

4Note that the Intel 5300 NIC reports the CSI amplitude in
voltage space [8]. We convert the amplitude of CSI |h| into
R with the unit of dBm as: R = 20 log (|h|/1000).
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diffraction theory [21]. However, in the indoor office en-
vironment, the situation is more complicated. Fig. 4 dis-
plays that the CSI amplitudes of some subcarriers are in-
creased (e.g., the 5th subcarrier) or remain unchanged (e.g.,
the 9th subcarrier), which are obviously inconsistent with
the diffraction theory. Thus, if we apply the power fading
model directly on the raw CSI measurements, these inconsis-
tencies will result in large localization errors. For example,
Fig. 5 shows the CSI changes of all subcarriers when we
let a target move along the LoS path from the transmitter
to the receiver. For evaluation purposes, we also plot the
theoretical CSI values in Fig. 5 based on the diffraction the-
ory in Eqn. (3). We can see that the variations of the raw
CSI change measurements are quite large, and the averaged
values do not match the theoretical curve well.
The CSI changes at all subcarriers in an indoor environ-

ment can be categorized into three groups which we term
them as expected change, abnormal change and transition
change shown in Fig. 4. The expected change has a fea-
ture similar to the outdoor open space environment, which
is mainly caused by the presence of a target and conforms
to the diffraction theory. The abnormal change has an op-
posite effect to the expected change, i.e., the CSI amplitude
is increased rather than decreased. This abnormal change is
caused by constructive multipath propagations in the indoor
environment. The transition change is the “transition zone”
between the expected change and the abnormal change.

5.2 Pre-Processing Scheme for CSI
The intuition of the pre-processing scheme is that different

subcarriers are experiencing frequency-selective fading [10].
Thus, not all subcarriers are affected equally by the multi-
path as depicted in Fig. 4. Our objective is to remove those
subcarriers greatly affected by multipath because the CSIs
on these subcarriers do not fit the theoretical model. To fil-
ter out these dirty subcarriers with abnormal CSI changes,
our first step stems from the “power increase” observation
at some subcarriers. Specifically, when the CSI amplitude
of the k-th subcarrier is increased instead of decreased, we
know the subcarrier is affected by multipaths and the CSI
measurement at this subcarrier should be filtered out. Un-
fortunately, it is not easy to filter out the transition part
since it may also exhibit the “power decrease” feature. To
address this issue, we adopt a threshold to filter out the sub-
carriers in the transition part based on whether the power
decrease is large enough. Specifically, if a target is not lo-
cated on the LoS path, the threshold δeff is defined as the
averaged standard deviation over all the K subcarriers:

δeff =
1

K

K∑
k=1

fk
f0
× δk, (7)

where f0 is the central frequency, fk is the frequency of
k-th subcarrier, and δk is the standard deviation of the am-
plitudes of baseline CSI measurements on k-th subcarrier
when no target is present. A large number of baseline CSI
readings is helpful for an accurate δk estimation. However,
it incurs a high latency. In our experiments, we find 100
CSI readings are good enough and it takes 10 s when we
employ beacons with 100 ms interval. Note that the dif-
ferent weighting factors fk

f0
is based on the fact that radio

propagation is frequency-dependent [39]. If a target is lo-
cated on the LoS path, the threshold δeff should be added
with the absolute signal attenuation |At| caused by the tar-

get. To identify whether a target is located on the LoS path,
the key observations are (i) |At| is usually within the range
of 4–9 dBm [31, 34, 32] when a human target blocks the
LoS path, and (ii) the noise is usually within 1–3 dBm [30,
48]. Thus, a target is more likely located on the LoS path if
the averaged CSI change of all subcarriers is larger than 5
dBm. Unless specifically mentioned, we denote δeff as the
threshold for simplicity in the rest of this paper.
Let F = {F1, F2, · · · , FK} be the CSI measurements when

a target is inside the FFZ of a link, and O = {O1, O2, · · · ,
OK} be the baseline CSI measurement acquired when we
make sure there is no target present in the monitoring area.
I is a set of subcarrier indices in which the CSI amplitude
decrease is larger than the threshold δeff , i.e., I = {j :
Fj − Oj > δeff , 1 ≤ j ≤ K}. When a target appears,
the effective CSI value CSIeff and the effective CSI change
value ΔCSIeff are calculated as:

CSIeff =
1

|I|
∑
j∈I

fj
f0
× Fj , (8)

ΔCSIeff =
1

|I|
∑
j∈I

fj
f0
× (Fj −Oj). (9)

We emphasize that the effective CSI CSIeff is the de-
sirable output of the pre-processing scheme. If a target is
located on the LoS path, CSIeff should conform to Eqn. (4),
otherwise it should conform to Eqn. (5). The effective CSI
change ΔCSIeff should conform to the diffraction fading
D in Eqn. (3). Obviously, if ΔCSIeff matches the model-
calculated D well, the power fading model can be applied to
estimate a target’s location accurately. Note that we have
CSI from 30 subcarriers and as long as a few of them fall in
the clean category, it is enough for our localization purposes.
In the future, we will improve the accuracy of selecting the
clean subcarriers with the help of phase information. For
example, multiple adjacent subcarriers should exhibit a lin-
ear phase change if these subcarriers are clean. However,
the phase information obtained from COTS Wi-Fi devices
is very noisy [41] and can not be applied directly.

5.3 CSI Pre-Processing Scheme Verification
Under the same deployment setup described in Section

5.1, we conduct experiments in three different environments,
i.e., a library, an office and an indoor empty hall correspond-
ing to high, medium and low multipath scenarios. Due to
space limitations, we only show the experimental environ-
ment and the deployment setup of the indoor office in Fig.
8. In all three environments, we set the distance between the
laptop and the AP to be 6 m. The following three claims
validate the effectiveness of our pre-processing scheme.

Claim 1. The CSI pre-processing scheme removes the
subcarriers which are greatly affected by multipath and pre-
serves those relatively “clean” CSI measurements which are
not affected by multipath much.

To verify the effectiveness of our scheme in identifying the
“clean” subcarriers, we acquire ground truth with the help
of CSI measurements in an outdoor open space which has
very little multipath. We make sure the link length and the
relative target location are the same in both outdoor open
space and indoor environment. First, in the outdoor open
space, we obtain a relatively stable and constant CSI change
at all the subcarriers because of little multipath. Then, in
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Figure 7: CSI amplitudes of all the subcarriers when a target is located inside the FFZ at three different locations.

Figure 8: Experimental environment
and deployment setup.
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Figure 9: CSI change measurements after
pre-processing.
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Figure 10: Absolute CSI change error un-
der three different environments.

the indoor environment, we identify the subcarriers with CSI
changes close to the stable change in the outdoor open space
as the “clean” subcarriers.
Fig. 7(a)–(c) show the CSI amplitudes of all the subcar-

riers when a human target is located inside the FFZ at
three different locations in the office. The corresponding
CSI changes in an open space are acquired from Fig. 3. The
mean and standard deviation of the CSI changes over all
the subcarriers in Fig. 3 are 7.25 dBm and 2.02 dBm, re-
spectively. Due to the environmental and hardware noises,
we take subcarriers whose CSI changes are within 7.25-2.02
dBm and 7.25+2.02 dBm as the ground truth “clean” sub-
carriers. Our CSI pre-processing scheme chooses the subcar-
riers whose CSI decreases are larger than the threshold δeff .
Fig. 7(a)–(b) show the results when the target is located on
the LoS path at two different locations, and Fig. 7(c) shows
the results when a target is located on the NLoS path but
still in FFZ. In this experiment, the averaged standard de-
viation over all subcarriers is 2.82 dBm and the minimum
empirical absolute signal attenuation |At| caused by the tar-
get is 4 dBm. Thus, the threshold δeff is 6.82=2.82+4
dBm in Fig. 7(a)–(b), and 2.82 dBm in Fig. 7(c). Based
on these thresholds, the results of Fig. 7(a)–(c) show that
the subcarriers selected by our pre-processing scheme match
the ground truth “clean” subcarriers quite well. Note that,
multipath may also cause a signal power decrease on some
subcarriers. However, it’s challenging to identify these sub-
carriers as the attenuations caused by the human body vary
a lot. So we only remove those subcarriers definitely affected
by multipaths and still keep the rest. Moreover, we input
the averaged CSI changes of all selected subcarriers into the
model thus the few wrongly selected subcarriers have a small
impact in the localization performance.
To summarize, our pre-processing scheme is able to pre-

serve those relatively “clean” CSI measurements which are

not affected by multipath much. We only show the results
in the office here as the results from the other two environ-
ments have a similar trend.
Note that the method to obtain ground truth “clean” sub-

carriers for verification can not be applied to identify the
“clean” subcarriers in localization experiments because it re-
quires the link length and target location as the input which
are not available. On the other hand, the proposed pre-
processing method does not need to know this information.

Claim 2. The pre-processed CSI change measurement
matches the diffraction-model-calculated value well.

Fig. 9 shows the pre-processed CSI measurements when a
target moves along the LoS path between transmitter and
receiver as mentioned in Section 5.1. For each location,
we acquire the pre-processed CSI change ΔCSIeff based
on Eqn. (9). Compared with the raw CSI measurements
which behave quite randomly as shown in Fig. 5, the pre-
processed CSI changes are relatively stable and match the
model-calculated values well in Fig. 9. We also evaluate
our pre-processing scheme in different multipath environ-
ments. Fig. 10 shows the CSI change errors between the pre-
processed CSI changes and the model-calculated values in
hall, office room and library environments. Most errors are
below 1.5 dBm which is smaller than the noise value which
is 2.82 dBm. These results imply that our pre-processing
scheme can effectively retrieve those clean subcarriers which
conform to the diffraction model, and thus ensure a high
localization accuracy even in a rich multipath environment.

Claim 3. The pre-processed CSI is a fine-grained spatial
indicator.

A fine-grained spatial indicator should have the capability
to distinguish a target’s small movements. The distinguish-
ing capability is reflected in the dissimilarities of the two
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CSI measurements. A CSI measurement is a K-dimensional
vector whose elements are from K subcarriers rather than
a single value. Following Wang et al. [33], we use the dy-
namic time warping (DTW) distance [24] to calculate the
dissimilarities of two CSI measurements when a target is at
different locations. The detailed DTW distance calculation
is presented in Appendix.
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Figure 11: DTW distances of the pre-processed CSI.
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Figure 12: DTW distances of the raw CSI.

To understand the spatial resolution and the discrimina-
tion capability of the pre-processed CSI measurements, we
have a person move from a reference position with a step
size of 10 cm and compute their respective DTW distance
with the reference position over 100 measurements. Fig. 11
shows that the median DTW distance of the pre-processed
CSI measurements is large even when the distance is 10 cm.
Note that it’s possible two different pairs of CSIs can have
the same DTW distance. However, the probability is very
low since the CSI changes are relatively random due to the
multipath indoors. Even if two pairs of CSIs have the same
DTW distance, we can utilize the DTW distances at nearby
locations to differentiate them since it is not likely the DTW
distance at nearby locations are same again.

6. SYSTEM DESIGN

6.1 Basic Idea of LiFS
Suppose there are N APs, M clients and one target, which

are randomly located in a 2D monitoring area. The num-
ber of wireless links between APs and clients is MN . We
can also measure a number of N(N − 1)/2 wireless links
between all the APs.5 Thus, based on the power fading
model introduced in Section 4, we can establish a number of
MN +N(N − 1)/2 equations to restrict the location of the
target. The locations of APs are fixed and known in reality.

5Note that we do not consider the links between clients as
we only assume access to CSI information from the APs.

Both the target and each of the M clients have two unknown
parameters, namely their [x, y] coordinates in the 2D space.
As mentioned in Section 4, a target’s effective height keeps
changing and it is impossible to predict this change. Thus,
we also treat the effective height as an unknown. Then, the
total number of unknowns is no larger than 2M + 3, since
the locations of some clients are known. Note that the num-
ber of equations MN + N(N − 1)/2 grows in a quadratic
fashion, while 2M + 3 grows linearly. This suggests that
given enough number of clients and APs (N > 3), such that
MN + N(N − 1)/2 > 2M + 3, there will be enough con-
straints to determine all the unknown locations of both the
target and the unknown clients.

6.2 Location Determination via Optimization
After modelling a set of power fading model equations,

LiFS needs to solve these equations. There are several ap-
proaches to solve a set of over-determined equations such as
inverting the power fading model equations directly or ap-
plying the least squares method. However, these approaches
are not efficient due to the complex non-linear Fresnel inte-
grations in the power fading model.
In this work, we solve these equations by attempting to

minimize the mean absolute error between the processed CSI
data and the power fading model calculated CSI value. More
specifically, let yij ∈ Y be the pre-processed CSI measure-
ment of the link �ij (1 ≤ i ≤ N , 1 ≤ j ≤ M). Then our
objective function J is given by:

J=min
1

|Y |
∑
|yij − PFM(Ci,Cj ,Ct,ht)|, (10)

where, Ci, Cj and Ct are the locations of APs, clients and
the target respectively, and ht is the target’s effective height.
We use the wavelength at the center frequency f0 for calcu-
lating the CSI values in power fading model.
LiFS pre-processes yij with two different schemes. If the

target is located in the FFZ of a link, LiFS pre-processes
the raw CSI measurement of this link with the scheme in-
troduced in Section 5. Otherwise, LiFS uses the scheme
proposed in FILA [39], which is given by:

CSIeff =
1

K

∑K

k=1

fk
f0

Ok, (11)

where Ok is the CSI measurement of k-th subcarrier, f0 is
the central frequency, fk is the frequency of k-th subcarrier
and K is the total number of subcarriers.
The principle of selecting pre-processing schemes will be

introduced later at the end of this subsection. Now, we focus
on how to solve Eqn. (10). It is noted that J is a non-linear
function due to the Fresnel integration. In this case, the
gradient descent (GD) algorithm [4] and the genetic algo-
rithm (GA) algorithm [18] are usually employed since they
are more efficient than the traditional method such as the
least squares method. The GD algorithm starting from an
initial guess is able to find the closest local minimum. How-
ever, the GD algorithm may fail to find a good solution when
the number of local minima in J is large. While the GA
algorithm can search the solution space more efficiently, it
sometimes misses local minima that might provide a reason-
ably good solution. To gain the benefits of both approaches,
motivated by Chintalapudi et. al. [7], we use a GA and GD
hybrid method to obtain the solutions of all unknowns, i.e.,
Cj , Ct and ht to be solved. In each iteration, GA starts pick-
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Figure 13: Average number of moving
and static clients in different environ-
ments.

(a) Library environment. (b) Testbed floorplan with 48 test locations.

Figure 14: Experimental environment and floorplan of a library (strong NLoS).

Figure 15: Testbed floorplan of a
home with 107 test locations.

(a) Classroom environment. (b) Testbed floorplan with 57 test locations.

Figure 16: Experimental environment and floorplan of a classroom (strong LoS).

ing a set of solutions (initiates all the unknowns) and then
refines the solutions via the GD algorithm. Each solution is
then evaluated by computing the J value.
Which power fading model formulas should we choose to

form the equations? Since the equations in power fading
model are based on the location where the target is located,
i.e., LoS, NLoS but still in FFZ, and outside of FFZ. Thus,
the power fading model equations are formed with a rough
estimation of the target’s location. Note that the CSI change
is negligible when a target is outside of FFZ while the CSI
change is large when a target is on LoS path. Thus, LiFS
can estimate the location range of a target roughly based on
just the effective CSI changes as below:

⎧⎨
⎩
|ΔCSIeff | > |At| ⇒ LoS (in FFZ),
δeff < |ΔCSIeff | ≤ |At| ⇒ NLoS but still in FFZ,
|ΔCSIeff | ≤ δeff ⇒ outside of FFZ.

(12)
where δeff (δeff > 0) is the threshold when no target is
present and δeff can be calculated based on Eqn. (7), and
At is the target absorption attenuation when the target is lo-
cated on LoS path. Accordingly, the pre-processing scheme
is chosen as follows: (i) The raw CSI values are pre-processed
by our scheme in Section 5.2 if the target is located in FFZ;
(ii) The raw CSI values are pre-processed by the method
proposed in [39] if the target is outside of FFZ.
The signal attenuation At is dependent on the target so

an overweight man may cause a larger signal attenuation
than a slim man. To deal with this problem, LiFS takes At

as an unknown in addition to all the other unknowns. The
good thing is that the number of unknowns is usually much
smaller than the equations, so one added unknown will not
affect the performance of LiFS. To estimate At, we first pick
an initial value for At based on the empirical knowledge. |At|
is usually within 4–9 dBm [32, 34, 31]. Even if there is a large
error in the initial guess for At, the optimization scheme
is able to reduce the error to a small value after several

iterations. For example, in our experiments, the variations
of the estimated At are no larger than 2 dBm after 3–5
optimization iterations.

6.3 Coping with Client Mobility
In practice, most clients are mobiles and laptops whose

locations may change sometimes. However, it is not likely for
all users to move their devices simultaneously and frequently.
We record the number of moving and static clients in two
days across three different environments. We divide two
days into 288 10-minute window pieces. Fig. 13 shows the
average number of moving and static clients across the 288
slots. We can see clearly that most of the time the majority
of clients are static. By observing the CSI variations of
multiple APs, we can filter out the CSI data from moving
clients and only keep the data from the static clients. So for
a specific client, if multiple APs observe large CSI variations
simultaneously, then this client is likely to be moving and
will not be included for localization.

7. IMPLEMENTATION
Experimental environments: To verify the effective-

ness of LiFS, we conduct experiments in three different en-
vironments. The first is a typical home environment with
a size of 10 m × 15 m. It has furniture and obstacles in
the form of concrete walls and glass/metal doors. Due to
privacy concerns, we only present the testbed floorplan in
Fig. 15. The second environment is part of a library with a
size of 7 m × 10 m. The library has many shelves as shown
in Fig. 14. The shelves have a height of 2.5 m and are made
of metal and wood, resulting in a rich multipath and strong
NLoS scenario. The third environment is an indoor class-
room with a size of 9 m × 12 m. The classroom has some
empty desks, resulting in a strong LoS scenario as shown in
Fig. 16. In each environment, the test locations are 0.6 m
separated from each other, and a person with a height of
1.72 m acts as the target.
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Figure 17: CDF plot of the localization
errors in home.
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Figure 18: CDF plot of the localization
errors in classroom (strong LoS).
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Figure 19: CDF plot of the localization
errors in library (strong NLoS).

Hardware configuration: In each environment, we de-
ploy 11 laptops, each of them equipped with an Intel 5300
NIC. Four of the 11 laptops are modified to act as APs
with the “hostapd” tool in [17] and the remaining 7 lap-
tops act as clients. For all environments, the locations of
APs, clients together with the test points are marked in Fig.
14(b), Fig. 15 and Fig. 16(b), respectively. Each AP probes
the other 3 APs and all the clients every 100 ms (a typical
beacon transmission interval) to obtain CSI. To reduce the
probing overhead, we can also use link layer NULL frames to
probe a client. Moreover, LiFS works with any packet, so it
can reduce the amount of deliberately-transmitted packets
by employing the transmissions from ongoing data commu-
nication and the beacons from APs. Note that LiFS does
not require all APs and clients to be on the same channel.
A target can affect two links on different channels and the
power fading information from both links can be employed
for localization. A desktop with 3.6 GHz CPU (Intel i7-
4790) and 8 GB memory is employed as the server to collect
CSI measurements through wired connections and runs our
localization algorithm.
Default deployment setup: In reality, the locations of

APs and some clients are fixed and known. Thus, we assume
the locations of all the 4 APs and one of the 7 clients are
known in our experiments. Usually, most clients (such as
laptops or mobiles) rest on a table or are held in the hand,
so we set the heights of clients as 1.2 m off the ground.
The heights of APs vary a lot. Some users like to place the
APs on the wall which is higher than a table, while others
still place the APs on the table. Thus, we place two APs
at a height of 1.7 m above the ground and the rest two
APs on the table with a height of 1.2 m. Note that, for
each Intel 5300 NIC, we only choose one antenna to receive
or transmit packets. When we evaluate the impact of the
number of clients in Section 8.3.1, we employ more antennas
and treat each antenna as an independent client. Unless
specifically mentioned, we use the default setup introduced
here for performance evaluation in the rest of this paper.
Experimental methodology: LiFS has two phases. Fir-

st is the baseline data acquisition when no target is present.
Each pair of transceivers (consisted of an AP and a client)
records 10 packets and forwards the packets to the server.
Second is the localization phase. When a target moves into
the monitoring area, each pair records 10 packets and also
forwards the packets to the server. At the server side, LiFS
pre-processes the CSI data and estimates the target’s loca-
tion by solving the power fading model equations. In order
to eliminate the random errors, we run both LiFS and other
localization schemes 40 times at each test location.

8. PERFORMANCE EVALUATION

8.1 Comparison and Metric
We compare LiFS with three other schemes in real indoor

environments described in Section 7.

• Pilot: Pilot [40] is a state-of-the-art CSI-based device-free
localization scheme utilizing the CSI correlations of all
subcarriers as fingerprints. Pilot uses the kernel density-
based maximum a posteriori probability (MAP) algo-
rithm to localize a target. We find that Pilot performs
the best when the kernel bandwidth is 3, and we use this
setting in our experiments as well.

• RASS: RASS [49] is a power-based scheme which uti-
lizes the RSS change, i.e., the averaged CSI amplitude
changes over all subcarriers as fingerprints. RASS uses
the support vector regression algorithm to localize a tar-
get. For a fair comparison, we use pre-processed CSI
change measurements as the input for RASS and employ
the“LIBSVM”tool [15] used in RASS to localize a target.

• RTI: RTI [38] does not need offline training effort, which
has the similar advantage as LiFS. RTI requires the prior
knowledge of all the transceivers’ locations. For a fair
comparison, we employ the scheme proposed in the well-
known EZ [7] system to localize the unknown transceivers.

Performance metric. Most human targets have a width
of no larger than 40 cm. To calculate the localization error,
we can not treat human target as a point. Thus, we consider
there is no localization error as long as the estimation is
within 20 cm range centred on the true location. Otherwise,
the error is calculated as the minimum distance between the
estimated location and this range area.

8.2 Overall Localization Accuracy
We show the overall performance comparisons in three dif-

ferent environments, i.e., a home , an open classroom (strong
LoS) and a library (strong NLoS).

8.2.1 Localization accuracy in home environment
We have the test subject go through all 107 test locations.

Fig. 17 depicts the cumulative distribution function (CDF)
plot of localization errors obtained for all the four schemes.
It shows that LiFS performs the best with median and 80-
percentile errors as small as 0.7 m and 1.2 m. RASS, Pilot
and RTI yield large median errors of 1.4 m, 1.8 m and 2.4 m.
The poor performance of RTI is due to the fact that RTI

needs precise locations of all the transceivers (i.e., APs and
clients). The unknown transceivers’ location errors caused
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Figure 21: Impact of the number of
clients.
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Figure 22: Impact of the fraction of
known location clients.

by EZ would decrease the localization accuracy of RTI. Un-
like RTI, LiFS can localize the target accurately without
requiring to know all the transceivers’ locations.
The performance of RASS and Pilot is not as good as

LiFS since the CSI measurements vary over time [9]. Thus,
the online measurements will not match the fingerprints in
the database, resulting in large errors. Unlike RASS and
Pilot, LiFS does not rely on manually-collected fingerprints.
By modelling the pre-processed CSI measurements with the
power fading model equations, LiFS has sufficient restric-
tions to localize the target accurately.
Compared with Pilot, the superiority of RASS stems from

our CSI pre-processing scheme. The space distance of the
pre-processed CSI data is larger than the raw CSI data as
validated in Section 5.3. As a result, RASS with the pre-
processed CSI data outperforms Pilot with the raw CSI data.

8.2.2 Evaluation in LoS and NLoS scenarios
In this subsection, we answer the following two questions:

First, what is the localization accuracy of LiFS in LoS and
NLoS scenarios? Second, compared with RSS, how much
accuracy has been improved by the pre-processed CSI? To
answer the questions, we choose the open classroom envi-
ronment (Fig. 16) and the library environment (Fig. 14).
Fig. 18 and Fig. 19 show the localization errors for all

the four schemes in strong LoS and strong NLoS scenar-
ios. All the schemes perform better in strong LoS scenario.
Compared with LoS scenario, the median localization errors
of LiFS, RASS, Pilot and RTI degrade by about 2×, 2.3×,
1.7× and 1.5× in NLoS, respectively. Overall, LiFS achieves
1.6×, 2.8× and 3.8× higher accuracies than RASS, Pilot and
RTI in LoS, and 1.6×, 2.2× and 2.7× in NLoS scenario.
The decrease in localization accuracy of LiFS in NLoS sce-

nario is mainly due to the errors in clients’ location estima-
tions. As shown in Fig. 20, when all the 7 clients’ locations
are known, LiFS’s mean localization error in NLoS is about
0.6 m, which is very close to the accuracy (i.e., 0.5 m) in
LoS. It implies that LiFS in NLoS can perform as well as in
LoS if all clients’ locations are estimated accurately.
The localization errors of LiFS using RSS in LoS and

NLoS scenarios are also shown in Fig. 18 and Fig. 19. The
localization accuracy of LiFS using RSS is comparable to
employing the pre-processed CSI in LoS. The reason is that
the RSS values match the model relatively well in LoS be-
cause of little and weak multipath. In contrast, when there
is rich multipath in the NLoS scenario, only a few subcarri-
ers’ CSI amplitudes match the proposed model. RSS is an
averaged “CSI amplitude” over all subcarriers [9, 8]. Conse-
quently, the RSS values do not match the model, and LiFS
with RSS suffers large errors in the NLoS scenario.

8.3 Performance under Different Parameters
In this subsection, we evaluate LiFS’ performance un-

der varying parameters in the home environment shown in
Fig. 15 with both LoS and NLoS Wi-Fi links.

8.3.1 Impact of the number of clients
To examine the impact of the number of clients on LiFS’

performance, we increase the number of clients from 5 to
21 with a step size of 2, while only one client’s location is
considered as known. As illustrated in Fig. 21, it is appar-
ent that the average localization errors of all the schemes
become smaller with more clients deployed. The intuition
is that, with more clients, LiFS (including other systems)
has more constraints on a target’s location. Because of the
same reason as we explained in Section 8.2, LiFS always
outperforms the other three schemes.

8.3.2 Impact of the fraction of known clients
If more clients’ locations become available, we would ex-

pect LiFS’ performance to be improved. To evaluate this,
we employ 10 clients and increase the fraction of clients
with known locations from 20% to 100% with a step size of
10%. Fig. 22 shows that the localization errors of LiFS and
RTI decrease with the increased fraction of known-location
clients. We attribute the improvement to the following rea-
sons. The localization accuracy of LiFS and RTI is related
to the location precision of the clients as discussed in Sec-
tion 4. With more clients knowing their locations, less er-
ror would be added into the target’s location estimation.
For RASS and Pilot, their localization errors are almost un-
changed with the increase of the number of known clients.
Since RASS and Pilot are “training and matching” schemes,
which do not rely on the clients’ locations [49, 40].

8.3.3 Impact of AP-client height difference
In reality, APs and most clients are not placed at the

same height. We seek to study whether this height differ-
ence would cause large location errors. To do so, we place all
the clients on several desks which are 1.2 m off the ground.
Then, we simultaneously increase the heights of all APs from
1.2 m to 2.4 m with a step size of 0.4 m. Fig. 23 shows the
experimental results under different height differences. The
right subgraph shows the detection rate and the left sub-
graph shows the localization error. The detection rate is
defined as the number of locations can be localized divided
by the total number of test locations. Fig. 23 shows that the
detection rate is decreased with the increase of height differ-
ence. The reason is that when an AP is placed higher than
a target, the target near to the AP is away from the wireless
link formed and thus would not be detected. However, when
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Figure 23: Impact of the AP-
client height difference.
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Figure 24: Impact of the move-
ment of clients.
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Figure 26: Impact of the
target size.

the height difference is below 0.8 m which is commonly seen
in reality, the detection rate achieved is no less than 80%.
For a given height difference setting, we only include those

test locations at which a target can be detected for localiza-
tion performance evaluation. Fig. 23 shows that the local-
ization error of LiFS is always less than 1 m no matter what
heights of the APs are, since LiFS is able to estimates the
unknown height difference together with the target location.
Note that if the APs are mounted on the ceiling, our sys-

tem may fail in some cases since the wireless links may not
be affected by the target. To address this limitation, one
possibility is adding some low-height transmitters. Another
promising way is utilizing the direct client-to-client commu-
nication employed in next generation Wi-Fi technology.

8.3.4 Impact of the movement of clients
In practice, most clients are mobiles or laptops. We eval-

uate the impact of clients’ mobility on LiFS’ localization
accuracy in this section. We let five users randomly move 5
of the 7 clients. Each person picks up one client and keeps
the height of the client at 1.2 m. We increase the number of
mobile clients from 1 to 5. Fig. 24 shows the experimental
results with different numbers of mobile clients.
The right subgraph of Fig. 24 depicts the detection rate.

It demonstrates that the detection rate is decreased with
more clients moving, since only the wireless links formed
by static clients and APs can be utilized for detection and
localization as discussed in Section 6.3. It also indicates that
as long as the number of static clients is no less than five,
which can be easily satisfied in reality, the detection rate is
no less than 90%. The left subgraph of Fig. 24 shows that
the mean localization errors are always smaller than 1.7 m
even with multiple mobile clients.

8.3.5 Impact of the target moving speed
We evaluate the tracking performance of LiFS when a tar-

get is moving. To do so, we let the test person move from the
“Bedroom 2” to “Study” (the movement trajectory is shown
in Fig. 15) with three different modes, i.e., stroll (about
1 m/s), fast walk (about 3 m/s) and run (about 5 m/s).
For each mode, the target person repeats moving along the
trajectory 30 times. Fig. 25 shows the tracking errors under
different speeds. The tracking errors of LiFS are always less
than 1 m as long as the target is not running.
When a target is running, the CSI changes may vary a lot

in a short time. Thus, LiFS can not always get stable CSI
changes, causing large errors. Note that in a typical indoor
environment, people rarely run. Thus LiFS is suitable for
tracking a moving target in most cases.

8.3.6 Impact of the target size
In practice, different targets or people are of different sizes,

e.g., different weights and heights. We would like to eval-
uate the impact of target size on LiFS’ performance. Un-
der the default experimental setup, we evaluate the perfor-
mance of LiFS on localizing 6 people with distinct weights
and heights. Fig. 26 illustrates the localization errors with
different human targets, i.e., ID1 (a child of 40 kg and 140
cm), ID2 (a girl of 48 kg and 165 cm), ID3 (an overweight
boy of 85 kg and 170 cm), ID4 (a boy of 65 kg and 175 cm),
ID5 (a tall man of 75 kg and 183 cm), ID6 (an overweight
tall man of 90 kg and 181 cm). LiFS performs well for all the
6 people with average localization errors between 0.7 m and
1 m. Moreover, the estimated absolute signal attenuations
|At| for human target ID1–ID6 are 6.5 dBm, 7.1 dBm, 7.8
dBm, 7.4 dBm, 7.6 dBm and 8.1 dBm respectively, which
do not vary much across different human targets.

8.4 Two-Target Localization
Here, we discuss the performance of LiFS for localizing

two targets. The intuition is that a target is not able to affect
all the wireless links simultaneously. When two targets are
located sparsely, each target will affect a disjoint subset of
links and thus can be separated and individually located.
However, when many targets exist or two targets are very
close to each other, it’s still challenging to accurately localize
each of them.
We conduct experiments in the“Living room”of the home

setting (Fig. 15) with a size of 7 m × 6 m. Two persons with
heights of 171 cm and 173 cm act as the targets. We let one
target move from the top left corner to the lower right corner,
and the other target move from the lower right corner to the
top left corner simultaneously. Fig. 27 shows four snapshot
localization results when the two targets are 5.4 m, 3 m,
1.8 m and 0.6 m away from each other. For each snapshot,
we collect 30 measurements and the localization results are
mapped into the heatmaps, where the red dots represent the
estimated locations and the plus signs indicate the ground
truths. LiFS is able to localize the two targets when they are
located sparsely. However, when the two targets are close
to each other, LiFS has difficulties localizing each individual
and we leave this challenging problem as our future work.

8.5 System Latency
Solving a set of power fading model equations by the hy-

brid GA and GD approach can take a few minutes depending
on the problem size. However, the running time can be re-
duced significantly after one round of operation. Once we
have obtained all the transceivers’ locations, new target’s lo-
cation query can be answered quickly from the second round.
To demonstrate running time cost of LiFS, we increase

the number of unknown clients from 0 to 18, and a total
number of 21 clients are deployed. Fig. 28 shows the run-
ning time results for localizing a single target. When we run

253



Figure 27: Four snapshot localization results when two targets are 5.4 m, 3 m, 1.8 m and 0.6 m apart, respectively.
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Figure 28: Running time cost of LiFS.

our system at the first time, the running time increases with
more unknown clients. However, the running time signifi-
cantly decreases to 0.065 s after the system’s first run, since
we only need to estimate the location of the target.
Some clients may move after the system’s first run and

we still need to find the new locations of the moved clients.
However, it is unlikely all the clients move at the same time.
LiFS can still localize the target with the static clients and
only need to update the locations of a small part of clients.

9. DISCUSSION
Localizability of LiFS: We consider an extreme case

here when very limited number of transceivers exist and are
not able to cover all the locations in a monitoring area. Then
if the target moves into this kind of deadzone not covered by
any link, LiFS is not able to localize the target. However,
we have three arguments for this extreme case: (i) Usually
there are a lot of transceivers in a typical office environment:
APs, laptops, mobiles, etc; (ii) A target (person) moves con-
tinuously in the physical space, and the target is not likely
to jump from one deadzone to another. The target may
be within a deadzone only at a particular time. However,
the target can still be localized before he/she moves into
and after he/she moves out of the deadzone. These location
information can be utilized to roughly estimate a target’s
location when the target is located in the deadzone; (iii) In
an office environment, a human target is not likely to be on
a table or a bookcase, thus actualy not all the locations need
to be covered.
Localization for multiple targets: In this paper, we

only present the localization performance of LiFS with two
targets. However, we believe LiFS can localize more targets
as long as the targets are located sparsely. The most chal-
lenging part lies in localizing multiple targets who are close
to each other. The multiple target localization accuracy may
be improved if our system can first detect the number of tar-

gets. This problem is still an open issue [48, 46] and we leave
it as the future work.
Localization of a specific target: Our system has the

potential to track a specific target. Different human targets
may have very different At values. By utilizing this At as
a signature, our system may be able to distinguish different
human targets and track a specific target. However, differ-
ent orientations of the same target may exhibit different At

values. We leave this interesting problem as the future work.
Impact of Wi-Fi interference: Wi-Fi interference ex-

ists in both the pre-obtained CSI baseline measurements and
the online measured CSI measurements. The interference
will be cancelled out when we calculate the CSI changes. As
long as the Wi-Fi interference does not change frequently
within a short time period, it will not affect the performance
of our system.

10. CONCLUSION
LiFS is a model-based device-free localization system that

does not require any explicit pre-deployment effort or ex-
haustive fingerprint collection. We design, implement and
evaluate LiFS against the existing Pilot, RASS and RTI
systems which either require the location information of all
the transceivers or need an exhaustive fingerprint database.
Real-world experiments demonstrate that LiFS outperforms
the three state-of-the-art systems in all environments. LiFS
also moves one step further on passive multi-target localiza-
tion which is well known to be challenging.
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APPENDIX

Here, we show how to calculate the DTW distance between
two CSI measurements. Let Bi = {Bi(1), · · · , Bi(p), · · · ,
Bi(K)} be a set of CSI amplitudes of all K subcarriers when
a target is located at location i. Consider two CSI series Bi

and Bj , we first construct a distance matrix ΩK×K , where
each element Ωp,q is defined as the Euclidean distance be-
tween the two values Bi(p) and Bj(q):

Ωp,q = |Bi(p)−Bi(q)|. (13)

The output of the DTW algorithm is a warping path G =
{g1, g2, · · · , gL} where gl = (pl, ql) and L is no less than K.
The DTW distance is the minimum total cost:

min
G

∑L

l=1
Ωml =

∑L

l=1
Ωpl,ql , (14)

under the following constraints:
(a) Boundary constraint: gl = (0, 0), gL = (K,K),
(b) Monotonicity constraint: pl+1 � pl, ql+1 � ql, pl+1 +

ql+1 � pl + ql.

256


