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Abstract

Sensor-equipped smartphones as well as wearable devices have undoubtedly become the predom-

inant source of user-generated data in mobile networks. The proliferation of user-generated data has

created a plethora of opportunities for personalized services based on the states of the users and their

surrounding environments. Those personalized services, although improving users’ perceived quality-

of-experience (QoE), have raised severe privacy concerns, as most of these applications aggressively

collect users’ personal data without providing clear statements on the usage and disclosure policies of

such sensitive information. In order to sustain personalized services with long-term privacy preservation,

disruptive paradigms are required. We envision that context awareness is a key pillar to providing long-

term Quality-of-Protection (QoP) for individual privacy. In particular, users transit between different

contexts, including mobility modes and social activities, and these contexts are temporally or logically

correlated, which can be leveraged by adversaries to compromise users’ privacy. In addition, users may

have different QoP preferences in different contexts. With these salient features in mind, this article

investigates context-aware QoP mechanism designs for personalized services in mobile networks. We

discuss possible attacks and propose corresponding countermeasures. In particular, we develop a QoP

framework that exploits context awareness to achieve better tradeoffs between service quality and privacy

protection in long-term services. Finally, we provide some implications for future context-aware QoP

mechanism designs by conducting a case study on smartphone traces.

W. Wang is with the Fok Ying Tung Research Institute, Hong Kong University of Science and Technology. E-mail:

gswwang@cse.ust.hk.

Q. Zhang is with the Department of Computer Science and Engineering, Hong Kong University of Science and Technology,

Hong Kong. E-mail: qianzh@cse.ust.hk.

May 28, 2015 DRAFT



2

Index Terms

Quality-of-Protection (QoP), Context Awareness, Privacy

I. INTRODUCTION

Due to continuing advances in low-power sensors and actuators, we are entering an era of

rapid expansion in wearable and pervasive computing. Nowadays, it is common for people to

carry smart devices, such as sensor-equipped smartphones, smart watches, and healthcare devices.

Those devices periodically measure users’ physical activities (such as Fitbit) and physiology (such

as Samsung Simband with electrocardiogram (ECG) and photoplethysmogram (PPG) sensors em-

bedded), making it possible to continuously track users’ contexts including mobility modes, social

activities, and health conditions [1]. These devices are normally capable of wireless connectivity,

which enables them to upload their sensor readings to their service providers. Examples of these

service providers include healthcare providers that own electronic medical record systems for

user’s data collection and analysis, activity trackers that keep track of users’ trajectories or

mobility modes, and environment-based applications that offer personalized services based on

the operating conditions of users and their surrounding environments.

On the one hand, these services provided along with smart devices truly reap the benefits

of context awareness to improve user’s Quality-of-Experience (QoE) [2]. QoE is a s holistic

evaluation that measures a user’s experiences with a service focusing on the entire service

experience [3]. The context-aware applications optimizes QoE by providing services tailored

to users’ contexts. On the other hand, these services require users to continuously upload their

personal data, which has imposed wide privacy concerns. Such privacy threats come from the fact

that many service providers aggressively collect users’ data without providing clear statements

about how to use the data and whom the data will be shared with. A recent survey [4] studied

thirty popular Android applications that have access to user’s location, camera, microphone

data, and found that fifteen of them sent users’ information to remote advertisement or analytics

servers. Being aware of such risks, users may be reluctant to upload their data to service providers.

However, this would also prohibit personalized services based on users’ data. Consequently, novel

privacy preservation paradigms for personalized services in mobile networks are imperative to

allow users to enjoy these services with guaranteed Quality-of-Protection (QoP).
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Fig. 1. Long-term services and QoP in mobile networks.

As smart devices continuously collect users’ data, long-term QoP is envisioned to guarantee

users’ privacy against untrusted service providers. Long-term data collection and service delivery

typically follow the architecture presented in Fig 1, where users transit between different contexts,

and continuously upload their sensor data to service providers, who extract users’ contexts and

offer context-related services. To provide long-term protection, several salient features about

user’s QoP preferences and behaviors need to be considered. First, users are sensitive to certain

contexts and are unwilling to disclose them to the service providers. Take the context transition

scenario in Fig. 1 as an example. The user is sensitive about the contexts “in meeting” and “in

hospital”, while considering “walking” and “in café” to be insensitive. Second, a user’s private

preferences vary across different contexts. For example, a user may consider the call logs during

meetings as private information, while being sensitive to location information when she is at

home. In addition, as users’ behaviors follow certain patterns, contexts are temporally correlated.

The connections between contexts can be exploited by adversaries to launch new attacks.

The goal of this article is to first investigate each of the aforementioned features of long-term

QoP for personalized services, and call attention to a clean-slate redesign of QoP frameworks for

long-term personalized services. We start at a deep dive at what potential threats arise with these

long-term services, and then propose corresponding countermeasures. Specifically, we shed light

on two types of adversaries – active adversaries who continuously launch real-time attacks and

passive adversaries who passively collect users’ data. Different attacking strategies are discussed.
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Fig. 2. Context acquisition from sensor data.

We review the pros and cons of existing QoP mechanisms under these long-term attacks, and

propose a context-aware QoP framework that exploits the features of long-term services. We

also take a case study on real context traces of 94 smartphone users. Merits of the context-aware

framework are verified, and implications about future QoP mechanism designs for long-term

services are provided.

II. EXPLOITING CONTEXT AWARENESS IN MOBILE NETWORKS: LONG-TERM SERVICES

AND PRIVACY THREATS

A. Long-Term Services in Mobile Networks

The contexts of a user refer to her state or surrounding environmental conditions [1]. A user

encounters a series of contexts and transits between various contexts. The gamut of contexts is

a set of interrelated user states and environmental conditions that are logically and temporally

correlated. As illustrated in Fig. 1, the mobile user usually goes to a café (the second context in

Fig. 1) after leaving home (the first context in Fig. 1) – this temporal correlation is the user’s

habit that can be learned from the user’s historical data. The mobile user walks on the street (the

third context in Fig. 1) after having coffee in the café – in this case the context “walking” has

logical relation with the context “in café” as a user needs to walk out of the café after having

coffee.

A range of sensors equipped on smart devices have been effectively used to infer user’s

contexts including location from GPS or wireless signals (Wi-Fi or cellular signals), mobility
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modes from accelerometer, and social activities from a combination of multiple sensors. Fig. 2

summarizes how sensors equipped on commercial off-the-shelf smart devices are used to extract

different types of contexts. Consequently, a large bundle of personalized services are emerging by

utilizing user-generated sensor data. Fig. 1 illustrates how personalized services are delivered to

users in mobile networks. Smart devices carried by a mobile user continuously acquire readings

from equipped sensors, and periodically upload the data to corresponding service providers via

the user’s smartphone. After receiving the user-generated sensor data, service providers perform

a series of actions to process the data, including context acquisition, pre-processing, storing, and

reasoning within the application boundaries [1]. The target of these actions is to “understand”

the current state of the user and environmental conditions, based on which service providers

deliver personalized services to the user. These personalized services can be categorized into:

• Passive services. This type of services passively tracks the user’s activities or conditions

for offline analysis. Examples are healthcare monitoring and activity tracking applications

such as Apple Healthbook and FitBit.

• Active services. This type of services recognizes the user’s contexts in real time and

autonomously take actions based on the current context. For example, an iOS application

named AutoSilent automatically mutes the phone when the user is in a meeting.

B. Privacy Threats in Context-Aware Perspective

QoP preferences in long-term services. Nowadays, location privacy has already been widely

concerned by both users and governments, as location traces can be used to infer many individual

behaviors and preferences that user do not want to disclose [5]. Context information, which

provides more profound implications about users’ behaviors and preferences, enlarges the range

of sensitive information exposed to service providers. Today, many service providers aggressively

collect much more personal data than what is required to support their functionalities. Users, on

the other hand, are sensitive about some contexts and corresponding sensor data whose disclosure

is undesired by the users. Users’ QoP preferences can be categorized into the following two

levels.

• Context sensitivity. A user normally has a sensitivity preference on contexts. First, a user

is sensitive to a subset of contexts. As illustrated in Fig. 1, a user might not want the

contexts “in meeting” and “in hospital” to be learned by service providers but she is willing
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to disclose the contexts “in café” and “walking”. In addition, a user has different levels

of sensitivities. For example, a user is normally more reluctant to disclose the context “in

hospital” than disclosing the context “in meeting”.

• Data sensitivity. The sensitivity level of sensor data is context-specific. For instance, a user

may consider the call logs during meetings as private information, while the user is sensitive

to location information when she is at home.

Context-aware adversaries and attacking strategies. Adversaries include untrusted service

providers and other entities who are interested in user’s private information and acquire users’

data by trading with the service providers. Context awareness is a double-edged sword – it

enables service providers to offer personalized services that substantially improve user’s perceived

experience, while it also adds extra shots for adversaries to compromise users’ privacy. Different

from “single-shot” scenarios as considered in many location and participatory sensing privacy

preservation studies, contexts are temporally and logically correlated [6]. Adversaries that are

aware of this unique feature can compromise the user’s privacy by exploiting such correlations

[7]. Specifically, adversaries can infer the presence of sensitive contexts based on their previous

observations on non-sensitive contexts. Context-aware adversaries can be categorized into passive

and active adversaries, as elaborated below.

• Passive adversary. The adversary aggressively collects the user’s sensing data for offline

analysis. The target of passive attack is to obtain the user’s personal information and

preferences, which are considered to be of great value.

• Active adversary. The adversary launches real-time attacks based on the user’s instant

context information. The adversary may push unwanted advertisements or context-based

spams/scams to the user, or even make the user a victim of blackmail or physical violence.

Different from the passive attack, the active attack has instant impact on the user and thus

is observable to the user.

Both types of adversaries can launch the following two types of attacks.

• Static attack. The static attack follows pre-defined rules to acquire user’s data and infer

user’s private information. The adversary may adopt certain models, such as Baysesian

Networks (BN) or Hidden Markov Model (HMM), to make inference about user’s sensitive

information. The major limitation of the static attack is that it largely depends on adversary’s
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Fig. 3. Illustration of context dynamics. The arrows refer to the possible context transitions.

background knowledge, and cannot update strategies according to the user’s actions.

• Adaptive attack. The adaptive attack evolves over time by continuously tuning attacking

strategies or parameters. The adaptation is made based on new observations during the

long-term services. The adversary learns more accurate patterns of the user based on newly

acquired data released by the user, and adjusts its attacking strategies accordingly.

We illustrate how these two attacks work by using a concrete example of a user’s possible daily

activities as illustrated in Fig. 3. An advertiser may want to push context-related ads through

smartphone apps to the user. The advertiser cannot directly infer the context at 9 a.m. as the

related data is suppressed, while after observing the user’s non-sensitive context “driving” at 10

a.m., the advertiser can infer backward that the user’s context at 9 a.m. is “in hospital”. Then,

the advertiser links the sensor data at 9 a.m. to the context “in hospital”, and use this observation

to update the inference model.

C. Achieving QoP: Models and Challenges

Plenty of QoP mechanisms have been proposed to thwart privacy breach in sharing user-

generated content, including user’s location information in location-based services (LBSs) [8],

[9], and sensor data in participatory sensing [10], [11]. These proposals employ several QoP

models that can be categorized into the following three classes.

• Anonymization and generalization models. The crux of anonymization and generalization

models is to replace a specific value of user’s attributes (such as sensor data) with a

coarser range to provide privacy protection. In LBS systems, the location coordinates of
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multiple users are transformed into the same geographical region to hide a user’s specific

location spot. In participatory sensing systems, sensor data from multiple users can also be

protected by releasing data of coarser granularity. The main advantage of anonymization

and generalization models is that the generalized range truly includes the real value and

thus there is no falsified data. Whereas, their limitations are also obvious. These techniques

normally require a trusted third party to serve as the anonymizer. Moreover, these techniques

work well under certain assumptions about adversaries’ prior knowledge, while the users’

privacy can be jeopardized in the presence of stronger adversaries, such as adversaries

knowing the anonymization algorithm.

• Randomization-based models. Randomization-based models include random perturbation

and differential privacy techniques. Random perturbation transforms the original data by

replacing a subset of the data points with randomly selected values, which can be generated

by adding random noise to the original data or executing randomized algorithms. Differential

privacy is achieved by injecting randomness into each user’s data so that aggregated results

are insensitive to the change of any single user’s data. A major appealing feature of

differential privacy is that it makes the worst case guarantee, that is, even if the adversaries

know the data of all the individuals except the target individual, the adversaries are still

uncertain about the data of the target individual. Though randomization-based models can

defend a wider range of attacks than anonymization and generalization models, the loss of

data quality and truthfulness caused by randomness is the main shortcoming.

• Cryptographic techniques. End-to-end encryptions are widely adopted to secure the trans-

missions of users’ reported data. These approaches mainly protect users’ privacy from ex-

ternal adversaries (such as eavesdroppers), while internal adversaries (such as compromised

or untrusted service providers) can decrypt the ciphertext to obtain users’ data. Secure

multi-party computation (SMC) allows multiple peers to jointly compute a function over

their inputs without revealing inputs to each other. However, SMC approaches are normal-

ly limited to specific computations and incurs substantial communication or computation

overhead.

Challenges in long-term services. Existing studies leverage the above techniques to enable

privacy preservation in LBSs or participatory sensing applications. Most of them are designed
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for protecting data privacy in single-shot scenarios [10], [12], or focus on static attacks [13],

while the user’s two-level sensitivities and the context-aware adversaries have not yet been fully

explored. To effectively preserve users’ privacy in long-term services, we require a disruptive

framework that considers temporal correlations and user dynamics. In particular, the framework

should be carefully designed to guarantee user’s QoP requirements (context sensitivity and

data sensitivity) against context-aware adversaries (passive and active adversaries) and different

attacking strategies (static and adaptive attacks). To this end, we propose a QoP framework for

long-term services and shed light on how context awareness is exploited to satisfy user’s QoP

requirements under different types of attacks.

III. CONTEXT-AWARE QOP FOR LONG-TERM SERVICES

A. Framework Overview

We consider a scenario where the user’s smart devices (such as smart watch, FitBit) connect to

her smartphone, which uploads sensor data to the untrusted service providers. Fig. 4 outlines the

work flow of the proposed context-aware QoP framework, which is implemented as a middleware

[14] on the smartphone to control the data flow from sensors to upper layer applications and

their service providers.

The crux of the framework is adaptively controlling “what” (data transformation) to release

and “when” (data release control) to release data to service providers based on the user’s profile

(behavior model and QoP preferences) and feedback (perceived QoE and context information)

from service providers or the user.

Concretely, this framework employs three functional primitives as follows.

• Sensitivity evaluation. The function of sensitivity evaluation is to estimate the amount of

privacy loss incurred by releasing current data. Sensitivity evaluation consists of two aspects:

direct privacy leakage of current context and indirect privacy leakage of future contexts.

The privacy leakage of current context can be estimated based on the user’s QoP preference

profile, which specifies the user’s sensitivity of each context (context sensitivity) and data

attribute (data sensitivity). Furthermore, to take into account the impact of releasing current

data on future private contexts and other private information, the sensitivity evaluation

considers the temporal and logical correlations among contexts, which can be learned from
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Fig. 4. Context-aware QoP framework.

the user’s behavior model or historical traces. As such, the framework jointly considers the

context correlations and the user’s QoP preferences via the sensitivity evaluation component.

• Adaptive data transformation. The adaptive data transformation component converts the

raw sensor readings to private forms by employing certain privacy preservation techniques

such as anonymization or randomization-based approaches. To combat context-aware adver-

saries, the data transformation strategies are tuned based on the updated sensitivity evaluation

as well as service quality and context information feedback from the user and service

providers. In particular, when adversaries are active, attacking information (such as context-

related spams/scams delivered by adversaries) is also included as an additional dimension

of feedback for data transformation adaptation.

• Data release control. The data release control component decides when to release the

transformed data to service providers based on the results of adaptive data transformation.

The aim of the data release control component is to find an optimal releasing period that

preserves most of the perceived service quality given the QoP requirements.
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In the following two sections, we shed light on how to implement the above framework to

thwart attacks from active and passive adversaries, respectively.

B. Providing QoP Against Active Adversary

Note that the static attack can be considered to be a special case of adaptive attacks (by fixing

the adversaries’ choices). Without loss of generality, we focus on the adaptive attacks where

adversaries intelligently adjust their strategies based on their new observations on the user’s

data. To combat against adaptive attacks, the framework observes the feedback from service

providers (context information), the user (perceived service quality), or even the adversaries

(such as spams/scams delivered by active adversaries), and updates the releasing granularity

accordingly.

We first model the user behavior based on historical data or public profiles. Previous work

has shown that a user’s transitions between various contexts can be captured by a Markov chain.

The sensitivity of each context is estimated by jointly considering its own sensitivity specified

by the user and its correlations with sensitive contexts. The amount of privacy loss of releasing

a context can be quantified by the weighted sum of the difference of adversaries’ prior and

post inference probabilities on each sensitive context, where the weight of each context is its

sensitivity specified by the user.

Since the user’s context is considered to keep changing over time and both the user and

the adversary make different actions at different times, the interactions between the user and

the adversary is in a stochastic setting and can be formulated as a competitive MDP, which

is a dynamic game with probabilistic transitions played in a sequence of stages, where each

player receives a stage payoff based on players actions and current system state and attempts to

maximize its expected sum of discounted payoffs. The user’s context is included in the system

state as the user’s action depends on its observation of contexts. In the case of active adversaries,

previous attack results should also be included in the system state. As the adversary’s strategy is

not known by the user, the user can only conjecture the adversary’s strategy from previous attack

results, which are assumed to be observable to the user as online attacks have instant impact on

the user. After observing the system state at each stage, both the user and the adversary decide

their actions for the current stage. The user controls the granularity of the released sensing

data to protect its context privacy while preserving the quality of context-based services. On
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the other hand, the adversary selects a proper subset of sensing data to infer user’s contexts.

The payoff function of the user is defined to be the quality of the context-based service with

weighted penalty on privacy loss. The user’s utility is to the expected sum of discounted stage

payoffs. Optimal strategies can be obtained at the Nash Equilibrium (NE) point of the game.

As such, at each stage, the QoP framework observes the current system state and performs data

transformation according to the optimal strategies.

C. Providing QoP Against Passive Adversary

Different from active adversaries, attacks by passive adversaries are not observable to the

user. Thus, we adopt differential privacy as the data transformation technique, which makes

no assumptions about adversaries’ background knowledge. As discussed earlier, the user’s data

sensitivity varies over time due to context transitions. In our framework, we jointly adjust the

releasing period and data transformation to minimize the overall data quality loss incurred by

data transformation.

The core idea is to use the data quality loss to guide the releasing period selection and

enforce differential privacy by injecting randomness into each selection. As we consider passive

services, the sensor data does not require to be uploaded in real time. We assume that the

maximal delay for data uploading is T time slots, and the data within the T time slots can

be divided into K consecutive periods for data transformation and uploading. To this end,

the framework first lists all possible periods, and computes the minimal data quality loss in

each period that is required to guarantee the user’s privacy requirements. Then, the framework

randomly selects each period to ensure differential privacy. In order to guarantee differential

privacy, the framework conforms to the exponential mechanism by selecting periods of less

quality loss with exponentially greater probabilities to ensure differential privacy. Interested

readers can refer [15] for detailed information about the exponential mechanism.

D. Enabling QoP middleware on Smartphones

The proposed QoP framework serves as a middleware that sanitizes raw sensor data and

releases the sanitized data to upper layer applications. We can leverage the sandbox mechanism

in today’s smartphone platforms, such as Android and iOS, to implement such a middleware.

A sandbox typically provides a tightly controlled set of resources for applications to run in
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and prohibits these applications from accessing resources outside the sandbox. Therefore, we

can build a sandbox to confine all untrusted applications, and use the sandbox to sanitize raw

sensor data according to certain privacy preserving mechanisms before providing the data to

applications.

IV. CASE STUDY ON SMARTPHONE TRACES

In this section, we evaluate the proposed framework using the Reality Mining dataset1, which

was collected by the MIT Media Laboratory from September 2004 to June 2005. The Reality

Mining dataset records the continuous activities of 94 students and staff at MIT equipped with

Nokia 6600 smartphones, which are pre-installed with several pieces of software that collects

data about call logs, Bluetooth devices in proximity of approximately five meters, location at

granularity of cell tower, application usage, transportation model (including driving, walking,

stationary), and so on. Based on the traces, we train a Markov chain for each user. For each

user, a certain percentage of contexts are selected as sensitive contexts.

A. Performance Under Active Adversaries

Baselines. We compare our framework with fixed and single-shot mechanisms. The fixed

mechanism draws an action that uniformly sets the granularity of each sensor. And the single-

shot mechanism adopts the optimal policy that maximizes the user’s current payoff without

considering future impact and the temporal correlations among contexts.

The average sums of discounted payoff of all users are reported in Fig. 5. The gap between

the sums of discounted payoff obtained by adopting the proposed and single-shot approaches to

zero when the percentage of sensitive contexts goes down. This observation can provide some

guidance for the context privacy preserving schemes that for the users with a small faction of

sensitive contexts, the impact of current actions on the future payoff can be neglected so as to

design more efficient algorithm.

B. Performance Under Passive Adversaries

Baselines. In the case of passive adversaries, the fixed mechanism treats each context as a

period, and the single-shot mechanism directly applies data transformation to the whole T time

1http://realitycommons.media.mit.edu/realitymining.html
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slots.

To measure the data quality loss, we use relative error, which is defined by sum of differences

between raw data and released data divided by number of time slots. Fig. 6 shows that the relative

error decreases when number of time slots increases. The error of the proposed framework stays

lower than those of the other mechanisms in all cases, which implies the merits of the adaptive

period control in the proposed framework.
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V. CONCLUDING REMARKS

This article has envisioned the crucial role of context awareness in achieving QoP in long-

term services. Instead of focusing on protecting the user-generated sensor data in each context

independently, context awareness exploits the correlations among different contexts and facil-

itates adaptive QoP paradigms. Through careful investigation of possible adversaries in long-

term services, we have presented a context-aware framework and demonstrated its merits using

real smartphone traces. Some observations in the smartphone case study can provide some

implications for future designs of context-aware QoP provisions.
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