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Abstract—The surging deployments of Wi-Fi hotspots in public
places drive the blossoming of location-based services (LBSs). A
recent measurement reveals that a large portion of the reported
locations are either forged or superfluous, which raises security is-
sues such as bogus alibis and illegal usage of restricted resources,
and leads to some initial investigation on location authentication.
However, most prior approaches leak users’ location information
or rely on external devices. To overcome these limitations, we
propose PriLA, a Privacy-preserving Location Authentication
system that verifies users’ location information based on physical
layer (PHY) information available in legacy Wi-Fi preambles. The
crux of PriLA is to turn detrimental features in wireless systems,
namely carrier frequency offset (CFO) and multipath, into useful
signatures for privacy protection and authentication. In particu-
lar, PriLA exploits CFO and channel state information (CSI) to
secure wireless transmissions starting from the handshake phase
between mobile users and the access point (AP), and meanwhile
verify the truthfulness of users’ reported locations based on users’
multipath profiles. PriLA is a clean-slate design that requires
no extra hardware or external networks, and is transparent to
upper layer protocols. Existing privacy preservation techniques
in the upper layers can also be applied on top of PriLA to
enable various applications. We have implemented PriLA on
GNURadio/USRP platform and commercial off-the-shelf Intel
5300 NICs. The experimental results show that PriLA achieves
the authentication accuracy of 93.2% on average, while leaking
merely 45.7% information in comparison with the state-of-the-art
approach.

Index Terms—Location authentication, location privacy, phys-
ical layer information

I. INTRODUCTION

Driven by the proliferation of Wi-Fi hotspots in public

places, location-based services (LBSs) have experienced surg-

ing development in recent years. LBSs take advantage of users’

location information to provide personalized or contextual ser-

vices. Existing applications of LBSs range from location-based

discount distribution like Groupon to geo-social networks like

Foursquare and Waze. A typical LBS system consists of an

LBS provider who offers services based on users’ physical

locations via trusted Access Points (APs), and mobile users

who request specific service along with their own location

and identity (ID) information.
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Unfortunately, a recent measurement study [1] on

Foursquare check-ins reports that there exists a large amount

of forged and superfluous location data uploaded by mobile

users. One major reason behind this phenomenon is that users

concern about their location privacy and use synthetic traces to

replace their true locations. The forged traces incur significant

discrepancies that mislead the applications driven by the

location data. What is worse, by forging location reports,

malicious users can abuse services like illegally accessing

restricted resources and creating bogus alibis.

To avoid location forgery, an essential step is location

authentication, which verifies the truthfulness of the reported

location data. An intuitive approach is to equip provider

with localization capability, which, however, falls short due

to the following two limitations. First, there are places such

as coffee shops and stores where the number of provider-

trusted APs is not enough to perform localization. Second,

the growing privacy threats of sharing location information

via LBS have been widely concerned [2]. Such privacy threats

come from the fact that many untrusted Wi-Fi infrastructures

aggressively collect the location data. Although mobile users

can secure their location data via encryption, their location

information is still at high risk of being leaked due to the

broadcast nature of wireless medium. Adversary can easily

infer the targeted user’s physical location by collaboratively

eavesdropping frames over the air from several sniffers (e.g.,

untrusted APs). Previous research [3], [4] shows that one can

determine a node with meter/submeter level resolution using

several receivers. Being aware of such risks, mobile users

may be reluctant to use LBS applications. Note that existing

location privacy preserving approaches cannot be directly

integrated into location authentication systems, since hiding

mobile users’ location information would also prevent the LBS

provider from authenticating them. Therefore, it is crucial to

enable location authentication without compromising users’

location privacy.

Despite growing attempts and extensive efforts, it is still

challenging to facilitate privacy-preserving location authen-

tication in Wi-Fi networks. State-of-the-art solutions either

fail to consider users’ privacy concerns [5]–[8] or rely on

dedicated hardware or external networks for authentication

[5], [9], while the capability of privacy-preserving location

authentication within the LBS system is missing. External

hardware or devices assisted authentication results in high

start-up costs, and cannot be implemented using existing LBS

infrastructures.
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The target of this paper is to fill the above gaps: we argue

that privacy-preserving location authentication can be realized

within existing Wi-Fi-based LBS systems by exploiting phys-

ical layer (PHY) signatures in Wi-Fi preambles. To achieve

this goal, this paper introduces PriLA, a Privacy-Preserving

Location Authentication system in orthogonal frequency-

division multiplexing (OFDM) based Wi-Fi networks (e.g.,

IEEE 802.11a/g/n/ac). This system allows the LBS provider

to successfully conduct authentication while and meanwhile

guaranteeing location privacy preservation for all mobile users

against adversaries. To this end, the following requirements

should be satisfied. First, to defend against adversaries with

localization capability, the users’ IDs should be fully protected

starting from the handshake (or association) phase. Otherwise,

the adversaries can infer a user’s location by analyzing the

signal strength [3] or anger-of-arrival (AoA) information [4]

extracted from the user’s frames. Second, the provider should

be able to verify users’ locations even when there is not enough

APs to perform localization.
To overcome the above predicaments, PriLA exploits carrier

frequency offset (CFO) and multipath, which can be obtained

via Wi-Fi preambles. In communication systems, CFO and

multipath are considered to be detrimental, while PriLA

leverages them for authentication and privacy-preservation.

PriLA takes advantage of the channel reciprocity property,

and uses CFO together with channel state information (CSI)

to generate CFO patterns that are exclusively known by the

transmission pair. In particular, to defend against adversaries

with localization capability, PriLA uses CFO pattern to secure

users’ IDs starting from the handshake (or association) phase.

As such, the adversaries cannot link a frame to a certain user,

or infer the presence of a user, and thus fail to localize a user

via localization. To enable authentication without performing

localization, PriLA leverages users’ multipath profiles, which

can be extracted from CSI using multiple antennas. In addition,

the multipath profiles are reliable as it is determined by the

environment’s physical layout and hard to forge. As reported in

[10], users in proximity share similar multipath profiles. Thus,

the LBS provider can verify the reported location information

through comparing users’ multipath profiles.
The main contributions of this paper are summarized as

follows.

• We propose a detailed design for privacy-preserving loca-

tion authentication in Wi-Fi networks without assistance

from extra hardware or networks. In particular, we exploit

CFO and multipath information that can be extracted

from legacy Wi-Fi preambles.

• We leverage the CFO and CSI information to secure the

transmissions between users and the provider. The pro-

posed security technique leaks merely 45.7% information

compared to the state-of-the-art approach.

• We exploit multipath profiles to enable authentication

without localizing users. The experimental results show

that the multipath-based authentication achieves an aver-

age accuracy of 93.2%.

• We prototype PriLA using GNURadio/USRP testbed [11]

and off-the-shelf Intel 5300 NICs [12] to validate the

feasibility and merits of our design.

LBS provider

Adversaries

EavesdroppingE

2 . Location 
Authentication

Mobile userI want the service

Fig. 1. System architecture of location-based service in Wi-Fi networks.

The reminder of this paper is structured as follows. We

begin in Section II with the system model. Section III describes

the design overview. Section IV and Section V elaborate the

CFO encryption and the multipath-based authentication in

PriLA, respectively. System implementation is described in

Section VI. Experimental evaluation is presented in Section

VII. Section VIII reviews related work, followed by conclusion

in Section IX.

II. SYSTEM MODEL

A. Location-Based Service System Architecture

Fig. 1 depicts a typical LBS system architecture, which

consists of an LBS provider, mobile users, and adversaries.

In an LBS system, a mobile user requests service from the

LBS provider by reporting the user’s location information

with its ID to the trusted AP, which connects to the LBS

servers via a secured backhaul. In this paper, we assume that

a user’s ID is its MAC address, or its ID can be inferred

from its MAC address. As assumed in many existing location

privacy preservation proposals [13]–[15], the mobile user only

reports coarse location information to preserve privacy. Based

on the frames sent by users, the LBS provider checks the

truthfulness of the location information. Note that the LBS

provider may deploy only one AP within a user’s transmission

range. As such, it is normally infeasible for the AP to directly

localize a mobile user without the assistance from mobile

users. Only when the reported information is confirmed to be

true, the LBS provider delivers the service to the mobile user

via downlink transmission from the trusted AP. Following a

common practice in LBS system [9], [14], [15], we assume

that there are multiple mobile users within a coarse region.

B. Physical Layer Model

Channel Model. We assume that nodes are placed in an

indoor environment where the wireless channels are multipath

channels with scatters and reflectors. The wireless channels

are time-varying due to the movement of objects as well as

the varying atmospheric conditions, while the variance within

coherence time (normally tens or hundreds of milliseconds) is

significantly small. Hence, a channel within coherence time is
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assumed to be static. The multipath properties of a wireless

channel are identical in both directions, which is referred to

as channel reciprocity [16]. Note that the noise at two ends of

a link is asymmetric.

Hardware Impairments. In a typical wireless communica-

tion system [17], the signal to be transmitted is upconverted to

a high frequency carrier prior to transmission. The receiver is

expected to tune its frequency to the same carrier frequency for

downconverting the signal to baseband, prior to demodulation.

However, due to impairments of RF chipsets, the carrier

frequency of the receiver is impossible to be exactly same

as the carrier frequency of the transmitter. Hence in practice,

the received baseband signal, instead of being centered at DC

(0 Hz), will be centered at a frequency offset Δf , where

Δf = fcTX − fcRX , (1)

The representation of received baseband signal is (ignoring the

noise)

r(t) = x(t) ∗ e j2πΔft
Fs , (2)

where x(t) denotes the transmitted signal, r(t) the received

signal, and Fs the sampling frequency. In the single carrier

case, this equation can be further interpreted as

r(t) = A(t)ejθ(t) ∗ e j2πΔft
Fs = A(t) ∗ ej(θ(t)+ 2πΔft

Fs
), (3)

where A(t) and θ(t) are the magnitude and phase components

of the received signal respectively. It is obvious that the

frequency offset will cause the received symbol suffering from

phase rotation depending of the sampling time t and the

amount of Δf . In multiple carrier modulation like OFDM

system, the impact of CFO becomes more complicated. Large

CFO not only causes phase offset in received symbol, but also

introduces amplitude reduction of desired subcarrier, which

will largely degrade the decoding signal-to-noise ratio (SNR).

Preamble Structure. We assume that the mobile user uses

Wi-Fi to communicate with the LBS server. In particular, we

consider a typical OFDM-based Wi-Fi network, where the

PHY structure conforms to the Physical Layer Convergence

Protocol (PLCP) defined by IEEE 802.11a/g/n/ac. A preamble,

consisting of Short Training Field (STF) and Long Training

Field (LTF), is prepended to each frame. In IEEE 802.11n

specification, the STF has ten repetitions and each consists of

16 samples [18]. The periodicity of the STF is used for frame

synchronization and coarse CFO estimation. The LTF is used

to estimate fine-grained CFO and CSI, with which the effects

of the propagation channel are equalized.

C. Threat Model

We consider adversaries who are interested in tracking the

location of mobile users. We assume that an adversary is

computationally unconstrained, and can eavesdrop and analyze

all frames over the air in Wi-Fi networks. An adversary

can be either an external node or a compromised mobile

user. Adversaries are assumed to be equipped with multiple

antennas, and there may be multiple adversaries that collude

together to locate mobile users using existing localization

techniques (e.g., CSI-based [3] or AoA-based [4] approaches).

Mobile userAdversory LBS provider
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Enjoy the 
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Deliver the 
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Capture 
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CFO 
decryption

Link the ID to 
location

CFO 
decryption

Fig. 2. The flowchart of PriLA.

To this end, adversaries first identify the mobile user’s frames,

and then use CSI or AoA information of the frames obtained

at multiple eavesdroppers to determine the user’s location.

We do not consider active adversaries that perform active

channel jamming, mobile worm attacks, or other denial-of-

service (DoS) attacks, as these attacks cannot be used to

compromise user’s location privacy.

D. Problem Definition

The target of this paper is to devise an authentication

system without compromising mobile users’ location privacy.

Specifically, the system has the following objectives. i) The

system should verify the location of mobile users, and detect

faked location reports in real-time, even when there is only one

AP deployed within a mobile user’s transmission range. ii) The

system should preserve mobile users’ location privacy from

adversaries, who can learn nothing about users’ location by

eavesdropping. iii) The system should be practical and easy to

implement, meaning that we should leverage the information.

In particular, the system should only rely on the information

that can be obtained in existing Wi-Fi networks, and not

require any extra hardware or infrastructures.

III. DESIGN OVERVIEW

In this section, we sketch the design of PriLA. PriLA is

an authentication system that verifies mobile users’ location

reports without compromising their location privacy. The crux

of PriLA is to facilitate the LBS provider to authenticate users’

location by exploiting multipath profiles while preserving

mobile users’ location privacy by encrypting the location

reports using fine-grained PHY information.

The LBS server and a mobile user follow the protocol

described in Fig. 2. First, the mobile user requests the service

by exchanging handshake frames with the provider’s AP. Then,

both the mobile user and the provider extracts CSI and CFO

information from the preambles to generate a secret key, which

is used to encrypt the following frames sent by the user.

After receiving the encrypted frames, the provider decrypts

the frames using the CSI and CFO information obtained
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in the handshake frames, and then extracts the user’s ID

(MAC address) and location information from the frames.

Afterwards, the provider uses the CSI obtained from the user’s

frames to construct a multipath profile, which is compared

with multipath profiles stored at the provider for location

authentication. After verifying the truthfulness of the reported

location, the provider delivers the service to the user.

On the other hand, adversaries eavesdrop all the frames sent

by users and the provider, and try to infer the user’s location.

To perform localization of a certain user, the adversaries need

to identify which frame is sent by the desired user. If the

adversaries fail to identify the ID of a frame, they cannot

obtain specific location of the user. In this case, the adversaries

are agnostic of a user’s presence or location.

The next two sections elaborate on the above steps, provid-

ing the observations and technical details.

IV. CFO ENCRYPTION USING WI-FI PREAMBLE

A. Exploiting PHY Signatures

Recall that a Wi-Fi receiver always suffers from the CFO

when downconverting the signal to baseband due to the hard-

ware impairments. Specifically, CFO not only results in a loss

in SNR, but also creates inter carrier interference (ICI), which

can severely degrade the receiver’s decoding performance.

Inspired by this observation, we propose the CFO encryption

technique that leverages this inherent feature of CFO to thwart

adversaries from obtaining users’ locations.

The basic intuition behind CFO encryption is to inject an

intended CFO pattern to each frame sent by the user. As the

CFO pattern is injected at PHY, both the header and data

are protected. Without the knowledge of the CFO pattern, the

adversaries are unable to obtain the user’s ID or decode the

frame.

To make the CFO pattern as a secret key exclusively shared

by the user and the provider, we exploit the inherent PHY

signatures between a sender and a receiver. First, the CFO

between the user and the provider is unique and stable in a

short period of time. Due to the impairments of local oscillator,

there always exists a CFO between any two devices, and

the CFOs of a transmission pair is unique. Although the

local oscillator is affected by hardware conditions as well as

environmental changes such as temperature, it is stable in a

short period of time, which is much larger compared to frame

transmission period [19].

Moreover, a wireless channel is reciprocal, and cannot be

estimated by a node whose distance with the sender/receiver

is larger than half the wavelength of the transmitted signal

[20]. Such a property of wireless channel can be leveraged to

generate secret CFO patterns that are privately shared between

the sender and the receiver.

However, to leverage the above PHY signatures for location

privacy preservation, we have the following challenges.

• First, to fully protect a user’s location privacy, adversaries

should learn nothing about the user’s ID or location from

the first frame (i.e., handshake frame) that a user sends to

the provider. However, existing PHY security techniques

[16], [21], [22] are primarily designed to secure the data
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CSIAP

MACu

Adversary

CFO’u CSI’u

CSI’AP

Preamble

MAC header

Data

EncryptIon

Fig. 3. Secure handshake protocol.

transmission of subsequent frames after the handshake

frame, which leaves the header of the handshake frame

exposed to the adversaries. As such, the adversaries can

extract the user’s MAC address and localize the user

based on the CSI estimation. Hence, a special designed

protocol is required to protect the handshake frame.

• Second, the CFO pattern encoding should be as robust

as possible to ensure effective communications between

users and the provider, while at the same time as efficient

as possible so that we can generate as many secret bits

as possible in each frame to minimize the number of

handshakes. However, due to RF impairments and local

interference, the estimated CSI values at the sender and

the receiver are not exactly the same. Directly extracting

bits from CSI (e.g., threshold-based approach [16]) can be

very efficient, while it is not robust to local interference

or hardware impairments. Thus, a careful investigation

into the impact of local interference and hardware im-

pairments should be conducted to devise a robust and

efficient coding scheme.

B. Securing The Handshake

As mentioned above, to prevent the adversaries localizing

the user at handshake phase, the MAC address of each frame

sent by the user should be kept as private information between

the user and the provider. One might think of simply removing

the MAC address at handshake phase to hide the user’s ID.

This method, though successfully preventing the adversaries’

attacks at handshake phase, is inapplicable to establish a

secured link between the user and the provider. As there

are multiple users in a Wi-Fi network, the provider cannot

match the secret key generated at the handshake phase to the

corresponding user, and thus fails to decrypt the subsequent

frames sent by the user. To addresses this predicament, we

leverage the CFO signature to secure the handshake protocol.

As discussed earlier, the CFO of a link is unique and can

be obtained using existing Wi-Fi preamble. Such appealing

features make CFO ideal for user identification at handshake

phase. In particular, the user sends a frame to the provider’s

AP to request service. As depicted in Fig. 3, the request frame

sets the transmitter address as “NULL” to hide the user’s MAC

address from adversaries. The provider extracts the CFO and

CSI information from the preamble, and maintains a mapping

CFOu → CSIu for a user u. Then, the provider returns an
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Algorithm 1 Two-Layer Differential Coding (TLDC)

Input: CSI vector [c1, ..., cn]; bucket size L
Output: Secret key k

I. Initialization
1: Initialize k as an empty vector: k ← [ ];
2: Compute the differential CSI vector [d1, ..., dn−1], where

di = ci+1 − ci, ∀i = 1, ..., n;

3: Put the differential CSI values into different buckets one

by one following the rule: di → the �i/L�th bucket;

4: Find the maximal and minimal differential CSI values

dmax, dmin;

5: Generate four shape pattern vectors

v00 =
[
dmin

n , ..., idmin

n , ..., Ldmin

n

]
,

v01 =
[
Ldmin

n , ..., idmin

n , ..., dmin

n

]
,

v10 =
[
dmax

n , ..., idmax

n , ..., Ldmin

n

]
, v11 =[

Ldmax

n , ..., idmax

n , ..., dmax

n

]
;

II. Key Generation
6: for each bucket do
7: Compute Fréchet distances between the bucket and the

four shape pattern vectors;

8: Find the vector vi with the smallest distance;

9: Add the corresponding bits to k: k = [k, i];
10: end for
11: Return k;

acknowledge frame (ACK) to the user. The user extracts the

CSI information from the ACK, and uses the CSI information

to encrypt the subsequent frames. The provider first extracts

the CFO, and then finds the matched CSI information based on

previously logged mappings. Due to reciprocity of a wireless

link, the CFO and CSI information obtained by the user and

the provider is (theoretically) identical. Therefore, the provider

can use the CFO and CSI information obtained at the AP

side to decrypt the frame. On the other hand, even if the

adversaries can eavesdrop all frames sent by the user and

the provider, they cannot acquire the MAC address of the

user. Through eavesdropping, the adversaries can estimate the

CFO and CSI information of the adversary-user link and the

adversary-provider link. However, the adversaries are not able

to use such information to decrypt the subsequent frames sent

by the user, as they cannot infer the CSI information of the

user-provider link based on CSI information of other links.

Without the knowledge of a frame’s ID, the adversaries cannot

infer a user’s presence, or link a user to a certain location.

Hence, the user’s location privacy is fully preserved according

to the notion of privacy [23], [24].

C. CFO Encoding

A key technique that ensures the secure handshake phase

is to use the channel reciprocity for encryption. Ideally, the

estimated CSIs are identical at both ends of a link. However,

there are discrepancies caused by hardware imperfection and

local interference. In practice, the CSI estimation at one side

are normally a shifted, enlarged, or shrinked version of the

CSI estimated by the other side. To alleviate the impact of

those discrepancies, we should carefully design an encoding

scheme, such that (i) the independently generated secret keys

at both sides are identical at a rate as high as possible, and

(ii) the secret bits extracted from each roundtrip should be

as many as possible to minimize the number of roundtrips

for key generation. To this end, we leverage the fact that the

shifting, enlarging, or shrinking mainly affect the amplitude

of CSI rather than its curve shape [21]. To save most of the

information stored in the CSI curve, we employ a two-layer

differential coding scheme.

Two-layer differential coding (TLDC). The core idea of

the proposed coding scheme is to extract the first and second

order derivatives of the curve simultaneously, and map the

derivatives into secret bits. Both the user and the provider

independently executes Algorithm 1 to encode the CSI curve,

which can be represented as a vector consisting of CSI values

in all subcarriers. The CSI vector is divided into multiple

buckets of equal length. Then, we map each bucket to a

predefined pattern for encoding. In particular, we define four

curve patterns, i.e., descending trend with decreasing gradient

(i.e., v00 in Algorithm 1), descending trend with increasing

slope (i.e., v01), ascending trend with decreasing slope (i.e.,

v10), and ascending trend with increasing slope (i.e., v11).

Those curve patterns can be determined using the first and

second order derivatives. For example, the descending trend

can be described by “the first order derivative is negative”, and

increasing slope can be described by “the second order deriva-

tive is positive”. The derivative patterns can be easily obtained

by transforming the CSI vector [c1, ..., cn] into the differential

CSI vector [d1, ..., dn−1], where di = ci+1 − ci, ∀i = 1, ..., n.

Similarly, the predefined patterns can also be transformed

to first order derivative space. In the first order derivative

space, the ascending/descending trend can be described as

positive/negative values, and the increasing/decreasing slop

can be described as the ascending/descending trend. Such

derivative-based encoding can resist the impact of shifting. To

alleviate the zooming effect caused by hardware imperfection,

we set the gradient of each predefined pattern according to

the CSI variance of its own received signals. Specifically, the

gradient of the ascending and descending trends is specified

to be dmax

n and dmin

n , respectively, where dmax, dmin are the

maximal and the minimal elements in the differential CSI

vector, respectively. As a bucket may not perfectly match one

of the predefined patterns, we map each bucket to the most

similar pattern, and generate secret bits using the indices of the

mapped pattern, as described in Algorithm 1. The similarity

between a bucket and a curve pattern is measured using the

discrete Fréchet distance [25], which is defined to be the

minimum length of a leash required to connect two spots who

follow two separate paths.

The security of the secret key is gated by the channel

reciprocity and independence properties. According to the

channel reciprocity property, the CSI and CFO measured by

the user and the AP are theoretically identical [20]. Therefore,

the user and the AP can independently generate CFO patterns

from CSI and CFO without transmitting them. On the other

hand, wireless channels over space larger than half wavelength

are independent [20], which guarantees that adversaries can

learn little about the channel information between the user
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Algorithm 2 CFO Injection

Input: Secret key k; inherent CFO Δf ; CFO injection range

[fl, fu]; number of symbols in the frame S
Output: Encrypted frame;

1: Generate a vector of CFOs of length � 2n
ML	 by multiply

each M bits of k with Δf ;

2: Hash each generated CFO to [fl, fu];

3: for i ← 1 to S do
4: Compute the index j of CFO used for injection: j = i

mod � 2n
ML	;

5: Inject the jth CFO value to the ith symbol;

6: end for

and the AP by eavesdropping their frames. Specifically, we

assume that adversaries are more than half-wavelength (i.e.,

about 6cm for 2.4GHz Wi-Fi signals) away from the user

and the AP. Therefore, adversaries can only obtain their own

channel information from the preambles of intercepted frames.

This information is independent of the channel information of

the user-AP link, and thus provides little information about

the secret keys.

CFO Injection. After generating a secret key using the CSI

curve, we leverage the secret key k to encode a CFO pattern

for encryption. Algorithm 2 summarizes the CFO injection

process. The CFO pattern is determined by the multiplication

results of the inherent CFO Δf and the private key k.

Concretely, we first multiply each M bits of k with Δf to

generate � 2n
ML	 CFOs. Then, we hash each generated CFO to

a predefined CFO injection range [fl, fu]. As such, we derive

a sequence containing � 2n
ML	 hashed CFOs. Finally, we inject

the jth CFO into the ith symbol, where j = i mod � 2n
ML	.

The mobile user will repeat these three processes until the end

of the frame. Since k is the private message merely shared

between the communication pair, the adversaries have no way

to guess the generated CFO pattern.

To realize CFO injection in Wi-Fi transceivers, there re-

mains several design challenges. The first issue is how to

choose an appropriate CFO injection range. Too large CFO

would cause the received signal significantly shifting out

of sampling frequency range at receiver, making the shifted

frame impossible to recover, whereas too small CFO can be

easily compensated by the adversary due to the redundancy

in the PHY coding and modulation. To investigate how much

CFO should be injected for encryption, we conduct several

experiments by injecting different CFOs normalized to sub-

carrier spacing. In the experiment, we use three USRP nodes,

one acting as a mobile user, continuously sending 1000-Byte

frames injected by one fixed normalized CFO, and the other

two nodes acting as the provider and an adversary, respectively.

The CFO injection begins after preamble. Fig. 4 depicts the

bit error rate (BER) performance for both the LBS provider

and the adversary under various normalized CFO injections.

The results show that the BER suffered by the LBS provider

decreases along with the decline of normalized CFO injection.

The BER suffered by the adversary also experiences slight

downward trend but remains very high both for PSK (around

20%) and QAM (around 30%) modulation as the normalized

CFO fraction declines to 1/100. Under such a high BER, the

frame cannot be decoded. In addition, the BER performance of

the LBS provider turns back to normal level when normalized

CFO fractions are below 1/20 for PSK and 1/30 for QAM.

Hence, we choose the CFO injection range with upper-bond

fu of 1/30 as normalized fraction and lower-bound fl of 1/100

as normalized fraction.

Another practical issue is pilot subcarriers. In IEEE 802.11n

standard, four known data subcarriers, referred to as pilot,

are included among all data symbols. The pilots are used to

track the carrier phase rotation caused by inherent CFO. To

eliminate the impact of injected CFO on pilots, we compensate

the pilot phase rotation in pilot subcarriers caused by the

CFO injection. As the CFO injection pattern is generated

beforehand, the sender can rotate four pilots in each symbol

before CFO injection in the inverse direction of same angle

caused by the injected CFO. As such, after the CFO is injected,

the pilots will shift back to the original position like not

suffering from phase rotation. By such preprocessing, the

pilots at receiver side are not able to track the phase rotation

caused by the injected CFO but are still able to track those

originally caused by the residual CFO. Such a preprocessing

only incurs little overhead by performing one fast Fourier

transform (FFT) and one convolution calculations.

D. Enhancing CFO Encryption Using Existing Schemes

Algorithm 2 provides physical layer protection based on

the Wi-Fi inherent baseband signal processing blocks with

minimal overhead and computational cost. All encoding and

decoding processes are executed based on the inherent channel

estimation and CFO estimation blocks in Wi-Fi PHY. To

enhance the security of our system, we can incorporate our

system with existing secret key based encryption schemes. In

particular, users and the AP extract secret keys from CSI and

CFO in the physical layer, and then utilize the secret keys to

establish secure protocols using existing encryption schemes.

Note that these encryption schemes can operate standalone or

alongside with the CFO injection to protect users’ location

information. Different encryption schemes can be built on top

of our system to fit the complexity constraints and security

requirements.

V. MULTIPATH-BASED LOCATION AUTHENTICATION

A. Design Rationale

One might think using localization techniques to verify the

location of a user. However, this is infeasible in practice,

as the scenarios of adopting user-reported location are when

the provider or infrastructure is unable to identify the user’s

location by themselves. This is because existing localization

techniques either require multi-AP cooperation or modifica-

tions of existing infrastructure. To solve this predicament, the

target of the proposed location authentication is to verify the

location of a user based on the information that is already

available in existing Wi-Fi infrastructure.

Our observation is that the signals emitted by nearby users

propagate along closer paths in indoor environments where

there are multiple reflectors and scatters. Fig. 5 depicts two sets
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Fig. 5. Measurement of multipath profiles in lab.1 and lab.2

of normalized multipath profiles from two labs measured by

one AP. Different lines denote signals from different reflected

paths. The red lines are the profiles of co-located users (within

one meter) in Lab1 while the black lines are the profiles

of co-located users in Lab2. The results report that only the

profiles of co-located users closely match, while the profiles of

users in different labs are irrelevant. Moreover, the multipath

profile is hard to forge as it is determined by the environment’s

physical layout. With these two merits, the LBS provider can

determine which areas the mobile user belongs to, while such

coarse-grain information is enough to help authenticate but

not comprises user’s location privacy. The remaining questions

are how to obtain multipath profiles and how to exploit these

information to conduct authentication.

B. Multipath Profile Acquisition

Antenna array can be used to construct the multipath profile

based on arrival angle of received signal [10]. The basic idea

is to measure the power of different paths coming different

directions by steering antenna beam across 180°. Let θ be

the beam steering angle, rk be the signal captured by the

kth antenna from the array, k = 0, ..., K − 1. λ denotes

the wavelength and D represents the distance between two

antennas. The power of received signal B(θ) in θ direction

can be calculated as follows

B(θ) = |
K−1∑

k=0

w(k, θ) ∗ rk |2, w(k, θ) = e−j2πkD cos θ, (4)

where w(k, θ) is the complex weight that helps to compensate

the signal phase difference between the first and kth antenna.

After phase alignment, the beam from all antenna only focuses

on θ direction and filters out signals from other direction. As

the newly manufactured Wi-Fi APs are equipped with mul-

tiple antennas to support multiple-input and multiple-output

(MIMO) in IEEE 802.11n/ac, we claim that the multipath

profile is available in existing Wi-Fi infrastructures.

C. Multipath Profile Matching

After acquiring the multiple profile of a user, the LBS

provider needs to compare it with the existing multipath pro-

files of users who have already been authenticated. However,

even in the same zone, two points only apart from few meters

will not hold the exactly same profiles due to the channel

noise and the spatial gap. Hence, simple correlation between

two profiles does not work. To address this issue, we observe

that although two profiles may experience scale variation

and misalignment, the underlying shapes remain stable. We

leverage Dynamic Time Warping (DTW) [26] to cope with

the impact of local shifts. Note that DTW is originally applied

in speech recognition, which tries to eliminate the influence

of timing misalignment. Given two time series, the alignment

process is to map any two points of two series. Likewise,

in our design, the core idea is trying to extract the similarity

between two misaligned profiles. DTW tries to find a path that

minimizes the overall cost of the continuous mapping pairs.

The cost of each mapping pair is defined to be the Euclidean

distance between two points. To find the shortest path between

two multipath profiles, DTW looks for a path starting from the

bottom left cell to the top right cell, and computes intuitive

distance between two curves. The cost of the path between two

series is normalized by the length of the path. If the similarity

is still very low after DTW calculation, we treat these two

profiles coming from users at different locations.
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Fig. 6. PriLA Transceiver Implementation.

D. Countermeasures For User Collusion

The above discussion focuses on the case of a single

dishonest user. Now we consider the threat of user collusion,

that is, multiple dishonest users collaboratively report bogus

locations. In particular, multiple co-located users may collude

to report the same bogus location. As such, the provider may

consider that their location reports are consistent with their

multipath profiles. In line with a common practice in collusion-

resistance protocols [9], [27], [28], we make an assumption

that the number of dishonest or collusive users is no more than

a fraction of the total number of users, which is referred to as

the threshold. As such, the AP can leverage the non-collusive

users to verify a user’s location by comparing their multipath

profiles. Specifically, when a user reports its location locu to

the provider, the provider compares the multipath profiles of

the user with that of multiple users whose reported location

is within a certain range from locu. The number of users in

the comparisons is set to exceed the collusion threshold. If

their multipath profiles are similar enough, the user location is

proved to be true. Otherwise, the user fails to pass the location

authentication.

VI. SYSTEM IMPLEMENTATION

PriLA can be realized in the existing OFDM PHY with

no change in hardware. We have implemented the prototype

of CFO encryption atop the OFDM structure of GNURa-

dio/USRP platform. We implement the entire CFO encryption

design specified in Section IV directly in the USRP Hardware

Drive (UHD). All the PHY parameters conform to PHY layer

convergence procedure (PLCP) format of IEEE 802.11. We

use DELL Optiplex 9010 with Intel i3 Dual-core processor and

4GB memory for the testbed setup. Nodes in our experiments

are equipped with RFX2450 daughterboards as RF frontend,

which is configured to operate in the 2.4-2.5GHz range. The

frame synchronization and channel equalization algorithms are

implemented according to IEEE 802.11a/n. Due to hardware

limitations of USRP, we turn to Intel 5300 NIC for multipath

profile construction.

Fig. 6 illustrates the implementation details of the

transceiver architecture. In encryption process, the CSI and

CFO information extracted from the Wi-Fi preamble is lever-

aged to generate the CFO pattern according to the algorithm

described in Section IV. In particular, we add the TLDC

Corridor

Fig. 7. Testbed layout with three zones, lab1, lab2 and corridor. The green
spot is the position where the LBS provider is placed. The blues spots are
the position where the mobile users are placed.

block for CSI coding, the pilot compensation block, and

CFO pattern generation block. Finally, the CFO encryption

is performed in time domain after the inverse fast Fourier

transform (IFFT). The decryption process is implemented by

reversing the encryption block.

The communication overhead of our system is caused by

two extra transmissions involved in the secure handshake pro-

tocol. It is worth noting that such an overhead is also necessary

in many other secret sharing protocols. The computational

overhead of our system is contributed by CFO encryption and

multipath based authentication, which require O(S + n) and

O(n2), respectively, where n (n = 52 in IEEE 802.11n) is the

length of the CSI vector, and S the number of symbols in the

frame.

VII. EXPERIMENTAL EVALUATION

We evaluate PriLA in this section. We first conduct the

CFO encryption evaluation in Section VII-A using USRP

implementation. Then, in Section VII-B, we evaluate the

multipath-based location authentication using Intel 5300 NICs.

The layout of the experimental environments is sketched in

Fig. 7, where Lab1 has 4 desks and Lab2 consists of 36 cubics.

We conduct experiments on different days during work hours.

There were 4 and 36 students in Lab1 and Lab2, respectively,

and most of them sat in front of their desks, while only a few

students were walking during experiments. Such movements

cause certain levels of mismatch in channel reciprocity, but

the impact on the performance of PriLA is small, as shown in

our results in the following subsections.

A. Performance of CFO Encryption

We evaluate the performance of secure handshake protocol

using three USRP2 nodes. One acts as a mobile user. Unless

otherwise stated, the other two are both placed 5 meters

away from the mobile users, acting as the LBS provider and

the adversary, respectively. The provider and the user are

implemented according to Fig. 6, while the adversary merely

acts as a passive eavesdropper that aims to decode the user’s

frames for localization purpose.

Evaluation metrics. We use three metrics, i.e., mismatch
rate, entropy, and leakage, to evaluate the performance of CFO
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encryption. Mismatch rate is defined to be ratio of mismatched

bits between the secret keys independently generated by the

user and the provider. Mismatch rate measures the robustness

of the encryption scheme.

Entropy is the average amount of information contained in

a message. For a random variable X , its entropy is defined

to be H(X) = −∑n
i=1 Pr[xi] log2 Pr[xi], where Pr[xi] is the

probability of X’s possible value xi. Here, we use entropy to

measure the uncertainty of the generated secret bits. In our

evaluation, we compute the entropy of the curve patterns used

for encryption. The probability of each curve pattern is com-

puted by counting the its frequency in repeated experiments.

The secret bits with higher entropy contain more information,

and are harder for the adversary to infer.

Leakage measures the amount of information learned by the

adversary. In our evaluation, leakage is defined to be the ratio

of matched bits between the sender (the user or provider) and

the adversary. An encryption scheme with lower leakage is

more secure.

Baselines. To evaluate the performance gain of the proposed

CFO encryption, we compare it with two baselines. The first

baseline is Puzzle [21], which the only-known secret key

generation scheme that extracts bits from the curve shape of a

channel’s frequency response. Puzzle generates bits by map-

ping each segment of the power spectral density to ascending,

descending, or steady shapes. For fair comparison, Puzzle is

modified to use the same secure handshake protocol as used

in PriLA. Another baseline named TH-PriLA adopts all the

same techniques used in PriLA, except that TH-PriLA uses

threshold-based approach to map each bucket to one of the

four predefined shapes.

Fig. 8 depicts the influence of the number of buckets on

the entropies of different schemes. The entropy of Puzzle

diminishes when the number of buckets increase. This con-

forms to the fact that as the bucket length is smaller, the

shape of a bucket is more likely to be steady. As such,

the probability of being steady is higher, which undermines

the uncertainty of generated bits. Fortunately, both TH-PriLA

and PriLA overcome such a constraint by adopting TLDC,

which exploits the first and second order derivatives for shape

encoding. As shown in Fig. 8, the entropy of both TH-PriLA

and PriLA steadily grow as the number of buckets increases up

to 10. Theoretically, the upper bounds TH-PriLA’s and PriLA’s
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Fig. 9. Mismatch rate under different numbers of buckets.

entropies are higher than that of Puzzle. Each bucket in TH-

PriLA and PriLA is mapped to one of four shapes, while

Puzzle maps each bucket to one of three shapes. Note that

entropy is maximized when the probabilities of all possible

values are identical, in which case the entropies of TH-PriLA

and PriLA are 2 bits and the entropy of Puzzle is only 1.58

bits.

To verify the robustness of the CFO encryption, we measure

the mismatch rate of different schemes in Fig. 9. PriLA

achieves comparable mismatch rate with Puzzle when the

number of buckets is no more than 5, while the mismatch

rate of PriLA is significantly higher than that of Puzzle when

the number of buckets grows to 10. The reason is that when

the number of buckets is large, the entropy of Puzzle is

quit small, implying low uncertainty in the bits generated

by Puzzle. Hence, the security level of Puzzle in the case

of large number of buckets is low. PriLA and TH-PriLA,

on the other hand, maintain high security level with large

number of buckets but is less reliable. Thus, the number

of buckets should be carefully selected to strike a balance

between entropy and mismatch rate. In our design, we choose

5 buckets for 20MHz channels. In this setting, PriLA achieves

1.54× entropy compared to Puzzle, while only incurring

16.7% mismatch rate than Puzzle. As a result, PriLA can

generate the effective secret of 5 × 1.7 × (1 − 6%) = 8.68
bits per frame, which is 65% higher than Puzzle, which

generates 5×1.1× (1−5%) = 5.25 bits per frame. Moreover,

PriLA outperforms TH-PriLA in mismatch rate while enjoying

comparable entropy, which implies that TLDC is more robust

than the threshold-based approach.

To validate the security level provided by PriLA, we conduct

experiments where the user and the provider are placed at a

fixed distant (5m) while the adversary is placed at various

distances apart from the sender. The number of buckets is fixed

to be 5. As shown in Fig. 10, more information is leaked to

the adversary with smaller distance. This is quit intuitive as

nearer adversary shares more similar multipath profiles and

channel responses. Besides, both PriLA and TH-PriLA leak

less information compared to Puzzle in all cases demonstrated.

On average, PriLA leaks merely 45.7% information compared

to Puzzle. It is easy to explain as the bits generated by both

PriLA and TH-PriLA is more evenly distributed than that of

Puzzle, as learned from Fig. 8. It is worth noting that in
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practice the distance between the adversary and the sender

is very likely to be much larger than 50cm, in which case the

amount of information leakage is even smaller. Note that TH-

PriLA achieves sightly lower information leakage than PriLA.

This is because the entropy of TH-PriLA is higher, which,

however, leads to mismatch rate almost twice as high as that

of PriLA.

Fig. 11 evaluates the overall information leakage, which is

defined to be the ratio of mismatched bits when the adversary

infers bits in the intercepted frame based on its observations.

The trend is consistent with Fig. 10 that less information

is leaked to adversaries with larger distances to the sender.

The leakage ratio diminishes when the user-adversary distance

increases, and drops to 0.2 at the distance of 50cm. It is

worthwhile noting that when the leakage ratio is less thant

0.5, the matched bits are caused random guess [21].

We further evaluate the BER performance of PriLA after the

secure handshake phase. In this experiment, the secret key is

already obtained by the user and the provider, who decodes the

frames using the secret key. The user continuously sends CFO-

encrypted 1000-Byte frames back-to-back to the provider.

To demonstrate that the CFO encryption incurs neglectable

impact on decoding performance, we also measure the BER

of the frames without CFO injection and treat it as the normal

decoding benchmark.

Fig. 12 reveals that the frame decoding performance of the

provider is very closed to that of the benchmark, which implies

that the CFO encryption has little impact on the decoding

performance. The slight difference in the decoding perfor-
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Fig. 12. BER performance of the provider and the adversary in PriLA.
TABLE I

THE ACCURACY OF MULTIPATH-BASED AUTHENTICATION IN THREE

ZONES

Zone Lab1 Lab2 Corrider

Lab.1 91.7% 6.2% 2.1%
Lab.2 7.7% 83.4% 8.9%
Corrider 7.0% 17.2% 75.8%

mance is caused by CFO mismatch measured by the user and

the provider. As discussed earlier, the CFO mismatch results

from hardware impairments or local interferences. Meanwhile,

the BER performance of the adversary is significantly poorer,

reaching to a level (more than 0.3) that is not unacceptable for

frame decoding. To sum up, we claim that CFO encryption can

prevent the attack from the adversary while not comprising

frame decoding performance of the provider.

B. Performance of Multipath-Based Location Authentication

To validate the feasibility of multipath profile based location

authentication, the key metric is the accuracy that the LBS

provider succeed to identify which zone the mobile user

belongs to. Hence, we conduct trace-driven experiment in

a real-world environment. As shown in Fig. 7, we divide

the test floor into three zones, two labs and one corridor.

The LBS provider is emulated by one fixed laptop, which is

assembled with a three antennas Intel 5300 NIC. Mobile users

are emulated by one TP_Link router, sharing a 2.4GHz channel

with 20MHz bandwidth. The fixed laptop continuously pings

to the TP_LINK router deployed in each zone. We repeat this

measurement by placing the router at six different position in

each zone.

After trace collection, we process them offline. Multipath

profiles can be constructed based on each CSI feedback frame

received by three antennas. We divide the profiles data in half,

one as the users that need to be authenticated, the other as

already-authenticated users.

We first assume that there is no user collusion and compare

a user’s multipath profile with three already-authenticated

multipath profiles, each of which locates in one zone. Table

I shows the matching accuracy in different zones. the results

report that the matching accuracy is relatively higher in Lab1

whereas worse in corridor. One reason behind is that the

physical layout is much consistent in Lab1 where all mobile

users experience similar multipath effect. However, corridor is

a free space environment where reflection is much less. The

other reason is that we only use three antennas to construct

the multipath profile, which offer limited multipath features
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Fig. 13. The accuracy of multipath-based authentication under user collusion.

like the number of peak and valley. We believe that the

performance will be better if the more antennas are equipped.

Then, we evaluate the authentication performance under

user collusion in Fig. 13. We set the collusion threshold to

be 50%. PriLA authenticates a user’s location only when its

multipath profile matches with the multipath profiles of over

50% co-located users. The results show that the authentication

performance is still high under different numbers of co-located

users. On aerage, the matching accuracy achieved by PriLA is

93.2%. Fig. 13 also implies that the authentication accuracy

has an ascending trend as the number of co-located users

increases. This is because with more co-located users, PriLA

is more resistant to local fluctuations in multipath profiles.

VIII. RELATED WORK

Several recent research works are presented to enable loca-

tion authentication using wireless infrastructures or signals.

Lenders et al. [5] utilize dedicated measuring hardware to

generate unforgeable location proofs for user-generated con-

tent. Saroiu et al. [6] present a set of applications that require

location authentication to enable their core functionality, and

leverage the physical proximity between a transmission pair to

verify a user’s location. Talasila et al. [7] leverage immediate

neighbor knowledge to verify the location claim from mobile

user. Brassil et al. [8] try to detect the location of mobile user

through monitoring traffic signatures of voice call. Location-

based query authentication is studied in [29], which develops

three novel index structures to allow the user and the provider

to jointly compute a digest function without leaking the query

results. These studies do not consider users location privacy.

A fairly recent work [9] propose a location proof update

system with privacy protection. This system leverages co-

located Bluetooth mobile devices to generate location proofs

and periodically change users’ pseudonyms to protect their

location privacy. Different from [9], PriLA extracts PHY

signatures for privacy protection and does not require external

device assistance.

PriLA is also related to a wide range of work in location

privacy in wireless networks [13]–[15], [30]–[36]. Jiang et al.

[32] design a scheme to prevent privacy leakage by frequently

changing several types of sensitive information like MAC

address and signal strength. Li et al. [15] leverage homo-

morphic encryption to allow the provider answer encrypted

queries without knowing the location information. Similarly,

homomorphic encryption is also applied in [33] to enable

Wi-Fi fingerprint-based localization without leaking users’

locations. Antenna pattern synthesis is leveraged in [34] to

preserve the transmitter’s true location by modifying the RSS

information obtained by adversaries. Zhao et al. [35] study the

privacy issues in users’ check-in records in social networks,

and propose a lightweight framework with a novel index

structure to allow private friends searching in location-based

social networks. Spatial cloaking or anonymization is adopted

in [14], [30], [31] to preserve user’s location privacy by report-

ing coarse-grained location information. Gruteser et al. [30]

dynamically adjust the temporal or spatial resolution of users’

locations to meet privacy requirements. A spatial histogram

approach is developed in [14] to estimate statistical distribution

of aggregated location information while preserving the indi-

viduals’ locations. An incentive mechanism is devised in [31]

to motivate users to participate in anonymization protocols.

Tao et al. [36] investigate the privacy issue when adversaries

are capable of inferring a user’s location using localization

techniques. This work motivates the adoption of a similar

threat model in PriLA, and inspires us to prevent adversaries

from acquiring users’ reported location as well as inferring

users’ location through localization. However, these works

only focus on location privacy, while PriLA aims to enable

privacy-preserving location authentication.

PHY information has been exploited to facilitate the security

and privacy mechanisms in wireless networks. The CFO en-

cryption technique proposed in this paper follows on the heels

of several recent efforts [16], [21], [22], [37] that use channel

reciprocity for encryption. Premnath et al. [16] study the re-

ceived signal strength (RSS) variations on the wireless channel

between the two devices, and propose an environment adaptive

secret key generation scheme using the temporal variations.

Liu et al. [22] take one step further by enabling secure group

communications using RSS-generated secret keys. To boost

the number of secret bits generated by each frame, CSI-based

secret key generation is first proposed in [37]. Different from

these proposals, Qiao et al. [21] extract secret bits from the

shape of frames’ power spectral density to provide more robust

encoding. PriLA differs from these proposals in two aspects.

First, these proposals focus on data encryption after secret key

extraction, while PriLA ensures secure handshake even when

the secret key has not been generated. Second, PriLA exploits

more fine-grained shape information in CSI curve to develop

a coding scheme with higher entropy. Other PHY information

has also been investigated to enable different functionalities in

wireless networks. AoA information is used to mitigate Wi-

Fi spoofing attacks in [38]. Multipath profiles are leveraged to

assist RFID positioning in non line-of-sight environments [10].

Differently, PriLA leverages multipath profiles to facilitate

privacy-preserving location authentication in Wi-Fi networks.

IX. CONCLUSION

This paper presents PriLA, a privacy-preserving location

authentication framework in Wi-Fi networks. PriLA extracts

the inherent CFO and CSI signatures from legacy Wi-Fi
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preambles to verify users’ locations without compromising

their privacy. We have prototyped PriLA to demonstrate its

feasibility and merits. We hope that the design of PriLA can

contribute to the wireless community by facilitating privacy-

preserving location authentication without the assistance from

extra devices or external networks.

The PHY signatures used in PriLA can be easily obtained

from legacy Wi-Fi preambles. PriLA is a clean-slate design

that is transparent to upper layer protocols, and can be in-

tegrated into OFDM-based Wi-Fi devices without hardware

modifications. With those features, we believe that PriLA

can be easily applied to existing LBS systems with a slight

upgrade.
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