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Abstract—In cognitive radio networks (CRNs), collaborative
sensing has been considered as an attractive means to improve
spectrum sensing performance. However, privacy issues arise
when multiple service providers (SPs) collaborate on learning
the spectrum availabilities. Specifically, sharing sensing data may
enable malicious SPs or secondary users (SUs) to geo-locate
an SU using existing localization techniques. These malicious
entities could be untrusted SPs/SUs, or external attackers that
compromise SPs/SUs. To incentivize SUs to contribute their
sensing data, the privacy of each SU should be guaranteed. In
this paper, we propose a privacy preservation framework called
PrimCos for multi-SP collaborative sensing, which addresses
several competing challenges not yet considered in the literature,
that is, being compatible with general collaborative sensing
schemes, providing privacy guarantee for each SU and ensuring
worst case privacy protection under collusion. Both analytical and
numerical results show that the proposed framework provides
privacy protection for each SU with controllable impact on the
sensing performance under different types of attacks.

Index Terms—Privacy Preservation, Collaborative Spectrum
Sensing, Cognitive Radio Networks (CRNs)

I. Introduction

With the proliferation of mobile devices and the rapid
growing of wireless services, cognitive radio networks (CRNs)
have been recognized as a promising technology to alleviate
the spectrum scarcity problem [1]. The CRNs allow sec-
ondary users (SUs) to utilize the idle spectrum unoccupied
by primary users (PUs). A major technical challenge in the
CRNs is to acquire knowledge about spectrum occupancy
properties through spectrum sensing. Recent standard pro-
posals for CRNs (e.g., IEEE 802.22 WRAN [2], CogNeA
[3]) adopt collaborative sensing to improve spectrum sensing
performance, that is, the sensing data from multiple SUs is
aggregated to learn the spectrum occupancy. In a realistic
CRN setting, multiple service providers (SPs) operate on the
same set of frequency bands in one geographic area, where
each SP serves a group of SUs. This multi-SP scenario has
been intensively discussed in the CRN literature (e.g., [4],
[5]). Existing collaborative sensing schemes [6]–[8] also show
that the performance of spectrum sensing can be improved
when more SUs are involved in the collaboration since the
spatial diversity can be better exploited with larger amounts
of sensing data. Thus, there is strong motivation for multiple
SPs to acquire the spectrum occupancy status collaboratively.

Although the collaboration among multiple SPs results in
better sensing performance, it suffers from privacy threats that
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compromise SU’s incentives to join the collaborative sensing.
On the one hand, the experiments conducted in [9] demon-
strate that SPs or SUs who are untrusted or compromised by
external attackers, referred to as adversaries, can geo-locate
an SU based on its sensing data using localization techniques.
The untrusted SPs or SUs can benefit from learning
the location of other SUs by either simply selling the
information to location-based service providers/advertisers
or malicious entities, or extracting contextual information
attached to locations, e.g., individuals’ hobbies, habits,
activities, and relationships [10], which are of great value
to advertisers or data analyzers. Thus, the disclosure of
sensing data compromises the SU’s location privacy, which has
aroused wide concern among consumers [11] and governments
[12]. On the other hand, with the knowledge of other SUs’
sensing data, malicious entities can improve their own
utilities by better manipulating the collaborative sensing
results [13] or through unfair competition due to informa-
tion asymmetry, which compromises the utilities of honest
SUs and SPs, thereby making them reluctant to join the
collaborative sensing. Being aware of the potential privacy
threats, SUs may not want to participate in the collaborative
sensing if their privacy is not guaranteed. Therefore, it is
essential to guarantee the privacy of each SU’s sensing data
in collaborative sensing.

However, most previous approaches on collaborative sens-
ing have focused on performance improvements [6]–[8] or
security related issues [13]–[15], while privacy issues are
less discussed. To our knowledge, the only work on privacy
issues in collaborative sensing is [9], which proposes two
privacy preserving protocols to protect SU’s sensing data from
an untrusted server. Unfortunately, the privacy issues in the
multi-SP collaboration context have not yet been investigated.
Although there are numerous approaches that protect location
privacy [16], [17] and sensing data privacy [18], [19], no prior
framework can be applied in the context of multi-SP collab-
orative sensing when the following practical requirements are
considered.

• Compatibility with general collaborative sensing
schemes. The privacy preservation framework should be
applied to most existing collaborative sensing schemes
(e.g., [6]–[8]) directly or with simple modifications.
Otherwise, the applications of the privacy preservation
framework would be limited.

• Privacy guarantee for each SU. Each SU is mainly
concerned about its own individual privacy rather than the
overall privacy in CRNs. To incentivize SUs to participate
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in the collaborative sensing, it is an essential requirement
that every SU’s privacy is guaranteed.

• The worst case guarantee under collusion. To provide
enough incentives for SUs to contribute their sensing data,
the sensing data of each SU should be private in all
cases, which is measured by the privacy guarantee in the
worst case collusion. That is, each SU’s privacy should be
protected even when all potential adversaries, including
all other SUs and SPs, collude together to launch attacks,
in which the sensing data from all other SUs and the
aggregated data are known to the adversaries.

To satisfy the above practical requirements, we propose a
Privacy preservation framework for multi-SP Collaborative
sensing, referred to as PrimCos. The core idea of PrimCos
is that before executing the collaborative sensing algorithm,
the original data is transformed into a privacy preserving form
that maintains statistical information. Specifically, SPs share
distribution information of overall sensing data in the form of
cloaks with perturbed counts. A cloak is a generalized range
that contains the sensing data from a group of SUs to hide the
exact sensing data, and the perturbed count for each cloak is
generated by adding random noise to the number of SUs in
the cloak. The cloaks with noisy counts aggregated from all
SPs can be taken as the input of general collaborative sensing
schemes by simple modifications, e.g., using interpolation to
reconstruct the sensing data.

The key challenge in designing PrimCos is to obtain an
optimal cloaking strategy with minimal information distortion
for multiple SPs without leaking the SU’s private sensing data.
To address this challenge, each SP first projects the original
sensing data into a single-dimensional space, and then shares
the projected data to collaboratively compute the optimal
cloaking strategy. To achieve this goal, there are two major
components in PrimCos. The first component aims at finding
a projection that maintains as much statistical information as
possible while still preserving each SU’s privacy. To identify
such a projection, the SPs collaboratively optimize the pro-
jection vector by providing only perturbed constraints without
sharing the sensing data directly. The second component is to
compute the optimal cloaking strategy based on the projected
data, which is perturbed to preserve privacy against collusion
attacks. The computation for the optimal cloaking strategy
is formulated as a dynamic programming problem, and the
analytical results show that the optimal cloaking strategy
computed from the perturbed data is also optimal with respect
to the original data.

The main contributions of this paper are threefold. First,
we identify and formulate the privacy threats in multi-SP col-
laborative sensing. Second, we propose a privacy preservation
framework, which can be applied in general collaborative sens-
ing schemes. Its impact on collaborative sensing performance
is confined with provable error bounds. Third, we quantify
the privacy guaranteed for each individual SU, and analyze
the privacy level achieved in the worst case collusion.

The rest of the paper is organized as follows. Section II de-
scribes the system model. The PrimCos framework is proposed
in Section III and the ensured privacy and accuracy impact
are analyzed in Section IV. Section V provides simulation
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Fig. 1. System model for collaborative spectrum sensing. In this example,
five SUs are served by three collaborative SPs, and sense three channels,
i.e., CH1, CH2 and CH3. Each SU sends sensing reports containing RSS
values in the three channels to its own SP.

TABLE I
Notational conventions

U the set of all SUs
P the set of all SPs
U(p) the set of SUs served by SP p
H the set of all channels
H the total number of channels
ru the RSS vector of SU u
M a differential privacy mechanism
ε, ε1, ε2 the parameters of differential privacy
b the projection vector
κi j the data point distance error in projection
c(p)

i j the term containing SP p’s sensing data in the
projection optimization problem

ĉ(p)
i j the perturbed version of c(p)

i j
tu the projection result of ru

x(p) the count vector stored by SP p
x̂(p) the perturbed version of x(p)

N number of bins
K number of cloaks
s cloaking strategy
E(s, x) the sum of squared errors in cloaking w.r.t x
T (i, k) the minimal error of a cloaking with k cloaks
Er( j1, j2; x̂) the squared error for an internal [ j1, j2] w.r.t x̂

evaluations and Section VI reviews the related works. Finally,
Section VII concludes the paper.

II. SystemModel

In this section, we first describe the network architecture
for collaborative sensing. Under this network architecture,
we present the adversary model and discuss three possible
attacks. To quantify privacy leakage, we discuss proper privacy
measures. The notational conventions used in this paper are
summarized in Table I.

A. Network Architecture

We consider a CRN as illustrated in Fig.1, where a set of
SUs U =

⋃P
p=1U

(p) served by a set of SPs P = {1, ..., p, ..., P}
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collaboratively senses channels to learn the channel occupancy
properties. Each SU u ∈ U senses a set of licensed channels
H = {1, ..., h, ...,H}, which may be dynamically used by PUs,
and obtains a vector of normalized received signal strength
(RSS) ru = [ru1, ..., ruh..., ruH], where ∀ruh ∈ ru, 0 ≤ ruh ≤ 1
with 1 for the strongest signal and 0 for no signal. Then, an
SU u ∈ U(p) sends ru to its SP p as the sensing report.

Multiple SPs P collaboratively learn channel availabilities
by considering the sensing reports from all SUs U without
revealing the sensing data of any individual SU. We make
no assumptions about the aggregation functions or learning
techniques of the collaborative sensing. The goals of collab-
oration among SPs can be manifold. SPs can aim to detect
the presence of PUs using certain detection algorithms (e.g.,
[6], [7]), or learn the spectrum occupancy properties across
multiple channels using some machine learning techniques
(e.g., [8]). At the end of collaborative sensing, each SP sends
the detection or learning results to all its SUs as feedback.

B. Adversary Model

We assume that an SU only trusts its own SP, and does
not want its sensing data to be inferred by other SPs or SUs,
which are considered as adversaries. The adversaries correctly
follow the collaborative sensing scheme, yet attempt to learn
the sensing data of the target SU by analyzing the information
received in the collaboration. Specifically, there are three kinds
of attacks considered in this paper.
• SP Attack. An SP adversary has perfect knowledge about

the sensing data of all its SUs and collects information
offered by other SPs during the collaboration. The SP
adversary tries to infer the sensing data of the SUs served
by other SPs based on its knowledge and the information
attained in the collaboration. Multiple SPs may collude
by combining their knowledge and information to infer
other SUs’ sensing data.

• SU Attack. One or multiple SU adversaries try to infer
the sensing data of other SUs based on the feedback
results and their own sensing data.

• SP-SU Collusion Attack. SP adversaries and SU adver-
saries could further collude by combining their knowledge
and information to launch an attack.

Note that for an SU u(p)
i ∈ U

(p), even other SUs served by
the same SP p are not trustworthy. Thus, in the worst case,
all SPs and SUs collude except the target SU and its SP.

C. Privacy Measure

An intuitive approach to privately compute collaborative
sensing results is using secure multiparty computation [20].
However, the secure multiparty computation techniques
either fail to be compatible with general collaborative
sensing schemes, or cannot support real-time sensing due
to the substantial overhead [20], [21]. Moreover, the secure
multiparty computation techniques assume that a fraction
of (e.g., a two-thirds of or a half of) the parties are
trustworthy, and thus cannot defend the SP-SU Collusion
Attack. Hence, we turn to privacy preservation techniques

to overcome these limitations. As the traditionally used
anonymization model [16], [17] was reported insufficient in
protecting location data [22], we adopt a more rigorous privacy
model, differential privacy [23], which has been recently
used to quantify privacy leakage in network trace [24] and
smartphone applications [25]. The intuition of differential
privacy is that the aggregated results preserve an individual’s
privacy if the influence of any individual’s data on the results
is bounded. A major appealing feature of differential privacy
is that it makes the worst case guarantee, that is, even if the
adversaries know the data of all the individuals except the
target individual, the adversaries are still uncertain about the
data of the target individual. This worst case guarantee is
suitable for measuring the collusion attacks in collaborative
sensing. In the following, we give the formal definition of
ε-differential privacy in the context of collaborative sensing.

Definition 1 (ε-differential privacy) A mechanism M pro-
vides ε-differential privacy for an SU u if for any possible
sets of sensing reports R = [r1, ..., ru, ..., rU] and R′ =

[r1, ..., r′u, ..., rU] differing only on u’s sensing data,∣∣∣∣∣ln Pr[M(R) = O]
Pr[M(R′) = O]

∣∣∣∣∣ ≤ ε, (1)

for all O ∈ Range(M), where Range(M) is the set of possible
outputs of M.

The parameter ε > 0 specifies the level of privacy. Specif-
ically, lower value of ε ensures stronger privacy. Normally,
ε is set to be small enough (e.g., 0.1) to make sure that
Pr[M(R) = O] and Pr[M(R′) = O] are roughly the same,
meaning that the output O is insensitive to the change of any
single individual’s data. On the other hand, it implies that
adversaries obtain roughly no extra information about SU’s
sensing data by observing O. To ensure that an output f (D)
is ε-differential private, a basic method [23] is to add random
noise to f (D), where the noise follows a zero-mean Laplace
distribution with noise scale of λ, denoted as Lap(λ).

Whereas, directly applying this method to sensing data
requires a significant amount of noise which results in severe
information distortion. In the next section, we propose a frame-
work to achieve differential privacy with minimal information
distortion.

III. Privacy Preserving Collaborative Sensing

In this section, we propose a framework to preserve the
privacy of collaborative sensing, called PrimCos, which pro-
vides privacy guarantee for each SU against three types attacks
described in the previous section.

A. Design Rationale

To design a privacy preservation framework for collabora-
tive sensing schemes leveraging different techniques, such as
hypothesis testing [6], [7], or collaborative filtering [8], we
observe that the basic steps of collaborative sensing are the
same: (i) the sensing data is stored in a vector (sensing data of
single channel) or a matrix (sensing data of multiple channels),
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Fig. 2. The framework of PrimCos.

where each entry is an RSS value on a channel reported by
an SU, (ii) the entries in the vector or the matrix are taken
as input of an aggregation function to extract some statistical
information, e.g., weighted summation [6], [7], or correlation
coefficients [8], (iii) a central server computes the final results
based on the extracted statistical information, and then sends
the results as feedback to the SUs to guide their channel
selection or sensing policy. According to these basic steps,
we observe that the final results of collaborative sensing are
based on statistical information about the aggregated sensing
data rather than sensing data from any individual SU.

Based on the above observation, we design a privacy p-
reservation framework called PrimCos, which is applicable for
general collaborative sensing schemes. PrimCos transforms the
original sensing data in a private form that maintains statistical
information about the overall data. Specifically, PrimCos maps
the original sensing data into a set of cloaks, and count
the number of sensing vectors in each cloak. The benefit
of cloaking is that we can do some simple modifications on
cloaks to adapt to an existing collaborative sensing scheme.
For example, we can use interpolation to reconstruct sens-
ing data from cloaks by assuming that the sensing data is
uniformly distributed in a cloak. The reconstructed sensing
data maintains the overall statistical properties of the original
data. Then, the reconstructed data is taken as input of a data
aggregation function or a machine learning algorithm adopted
by the collaborative sensing scheme.

B. Overview of PrimCos

Fig. 2 illustrates PrimCos, which thwarts the attacks as
described in Section II. First, each SU senses channels and
sends the sensing data to its own SP, which is the only
trustworthy entity to the SU. To prevent attacks from other
SP adversaries, each SP first projects its SUs’ sensing data
to a single-dimensional space, and then shares statistical
information of the projected data with other SPs. The statistical
information is represented by a count vector whose entry is
the number of projected values in a small interval. One SP
is selected as a leader, denoted as LSP, to gather the count
vectors of projected data from all SPs to compute the optimal
cloaking strategy, which is then sent back to each SP to guide

the distributed cloaking algorithm. The cloaking algorithm
makes sure that the feedback results leak no extra information
about the original sensing data. After performing the cloaking
algorithm within each SP, the cloaked data is taken as input to
a general collaborative sensing scheme. The details are stated
in the following parts of this section.

C. Privacy Preserving Projection

As stated in Section III-B, to preserve privacy, the SPs
transform the original sensing data by a non-invertible pro-
jection before sharing it with the LSP. In this subsection,
we focus on identifying an optimal matrix that projects the
original H-dimensional sensing data ru to a single value tu. The
benefits of applying a dimensionality-reducing projection are
threefold: (i) The non-invertible transformation preserves the
privacy of the original data; (ii) the communication overhead
is reduced since the single-dimensional data instead of H-
dimensional data is transmitted; (iii) the computations on a
single-dimensional data require lower complexity.

In the following, we formulate an optimization problem
to identify the projection vector b. The projection is optimal
at maintaining the distances between the data points so that
similar data points are mapped to the same cloak with high
probability. Thus, the objective is to minimize the overall data
point distance errors introduced by the projection. The problem
can be formally written as:

min
b,{κi j}

∑
∀i, j∈U

κi j

s.t. |‖b>(ri − r j)‖22 − ‖(ri − r j)‖22| ≤ κi j,∀i, j ∈ U, (2)

where b ∈ R1×H is the projection vector, and ri, r j are the
sensing data from any two SUs. Unfortunately, this problem
is non-convex and unlikely to be solved in polynomial time.
Thus, we relax the problem as follows.

As the first step, we derive a semi-definite relaxation (SDR)
[26] of (2). Let A = bb>, we have

‖b>(ri − r j)‖22 − ‖(ri − r j)‖22
= (ri − r j)>(bb> − I)(ri − r j)
= r>i (A − I)ri − 2r>i (A − I)r j + r>j (A − I)r j. (3)

To find an optimal b, we can first obtain an optimal A.
The condition A = bb> is equivalent to A being a rank one
symmetric positive semi-definite matrix, while the rank one
constraint is dropped in SDR. Thus, according to (2) (3), the
SDR version of identifying an optimal A is given by:

min
A,{κi j}

∑
∀i, j∈U

κi j (4a)

s.t. |r>i (A − I)ri − 2r>i (A − I)r j + r>j (A − I)r j| ≤ κi j,

∀i, j ∈ U, (4b)
A � 0. (4c)

The above problem is convex and can be solved via semi-
definite programming (SDP). However, the complexity for
solving this problem is still high since the number of con-
straints increase quadratically with the cardinality of U and
the SDP does not scale well with the problem size.



5

Algorithm 1 Privacy Preserving Projection
1: (1) At SP p
2: for each (i, j) ∈ U do
3: Compute c(p)

i j ;
4: Add independent random noise Lap( 3H−1

ε1
) to each entry

of c(p)
i j to obtain a perturbed version ĉ(p)

i j ;
5: end for
6: Put all ĉ(p)

i j in a set C(p), and send C(p) to the LSP;
7: (2) At the LSP:
8: if C(p) from all SPs are received then
9: Solve the LP problem (8) and obtain A;

10: Compute b by applying rank-one approximation on A;
11: Send b to each SP;
12: end if
13: (3) At SP p
14: Project original sensing vector ru into a single value using

the formula tu = b>ru;
15: Construct a length-N count vector x(p) based on{

tu : u ∈ U(p)
}
;

16: Injecting independent noise Lap( 1
ε2

) to each entry of x(p)

to get x̂(p);
17: Send x̂(p) to the LSP;

To provide better scalability, we further approximate (4)
to a linear programming (LP) problem. Specifically, we ap-
proximate the positive semi-definite constraint by tightening
it into diagonal dominance constraints [27], which introduces
an auxiliary variable S ∈ RH×H . According to [27], the positive
semi-definite constraint on A is replaced by

A = A>,
−slm ≤ alm ≤ slm,∀l,m,m , l,

all ≥

H∑
m=1,m,l

slm,∀l, (5)

where slm (or alm) denotes the entry in the lth row and
mth column of S (or A). It is obvious that the diagonal
dominance constraints (5) are linear, and thus the problem
(4) is approximated to an LP problem.

However, (4b) contains the sensing data of SUs which can-
not be shared directly. In the following, a privacy preserving
projection protocol (Algorithm 1) is proposed, in which each
SP contributes a set of perturbed constraints to compute A.

We denote r̃i j = vec(rir>j ) and â = vec(A− I), where vec is
the vectorization function that aligns all of the matrix entries
in a column vector. Then, (4b) can be rewritten as:

|â>[r̃ii + r̃ j j − 2r̃i j]| ≤ κi j,∀i, j ∈ U. (6)

The term containing SU’s sensing data is denoted as ci j =

r̃ii + r̃ j j − 2r̃i j. To avoid privacy breach, ci j is computed in a
distributed way. Each SP p computes the following term:

c(p)
i j = r̃(p)

ii + r̃(p)
j j − 2r̃(p)

i j ,∀i, j ∈ U(p), (7)

where i, j are any two SUs served by the SP p.

However, sharing c(p)
i j with the LSP is still not safe if the

LSP colludes with one of the SUs i, j to attack the other SU.
To defend against such collusion, a perturbed version ĉ(p)

i j is
sent to the LSP. Then, the LSP computes A by solving the
following LP problem:

min
A,S,{κi jp}

∑
∀i, j∈U(p),p∈P

κi jp (8a)

s.t. −κi jp ≤ â>ĉ(p)
i j ≤ κi jp,∀i, j ∈ U(p), p ∈ P, (8b)

A = A>, (8c)
−slm ≤ alm ≤ slm,∀l,m; m , l, (8d)

all ≥

H∑
m=1,m,l

slm,∀l. (8e)

To preserve privacy, we add random noise Lap( 3H−1
ε1

) to each
entry in c(p)

i j to obtain the perturbed version ĉ(p)
i j .

After obtaining an optimal A, the last issue is to find an
optimal b based on the condition A = bb>. If A is of
rank one, b can be derived directly from A. On the other
hand, if the rank of A is larger than one, we derive b
using the approximation method in [28]. The intuitive idea
is to apply rank-one approximation to A based on eigenvalue
decomposition.

Then, the LSP sends b to each SP. An SP p projects the
original sensing data {ru : u ∈ U(p)} to a set of single
values {tu : u ∈ U(p)} using the formula tu = b>ru. Since
b is publicly known, tu needs to be perturbed before sharing
with other SPs to preserve privacy. However, the sensitivity
of ru → tu is given by max

k
|bk |, where bk is the kth entry

of b, which can be very large, rendering large scale noise
that makes the perturbed data meaningless. To address this
issue, we apply generalization on the projected values instead
of adding noise directly. Since all entries of a sensing vector ru
fall into [0, 1], the range of the projected values is bounded by
[
∑

k min{0, bk},
∑

k max{0, bk}]. Thus, we can divide the range
into N basic bins with even lengths of

∑
k max{0,bk}−

∑
k min{0,bk}

N .
Then, for any SU u, its projected value tu falls into one of
the bins. The number of values in each bin is counted and
stored in a length-N vector. This count vector stored by an SP
p is denoted as x(p). Note that x(p) implies the distribution of
the projected values, and larger N preserves more information
about the projected values. To make sure the aggregated data at
the LSP are consistent, N is pre-defined and shared by all SPs.
Then, the SP p perturbs x(p) by adding random noise Lap( 1

ε2
)

and sends the perturbed version x̂(p). Algorithm 1 concludes
the projection procedure. We can see that the data shared with
the LSP are ĉ(p)

i j and x̂(p), and both are perturbed to preserve
privacy. The achieved privacy is quantified in Section IV.

D. Identify Optimal Cloaking Strategy

After the projection procedure (Algorithm 1), the LSP iden-
tifies the optimal cloaking strategy, as described in Algorithm
2. The aim of cloaking is to provide privacy preservation for
the original sensing data by merging N bins into K groups (i.e.,
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Algorithm 2 Identifying Optimal Cloaking Strategy
Input: a set of perturbed count vectors {x̂(p) : p ∈ P}; bin

number N; cloak number K
1: if x̂(p) from all SPs are received then
2: Aggregate all count vectors x̂ =

∑
p x̂(p);

3: Identify the optimal cloaking strategy s∗ via dynamic
programming following the recursive rule described by
(10);

4: Merge the counts of all bins in a cloak to get the cloak
count vector ẑ;

5: Send s∗ and ẑ to each SP;
6: end if

cloaks), while still maintaining the statistical properties for the
general collaborative sensing scheme. The K cloaks cover all
of the N bins and there is no intersection between cloaks. The
kth cloak containing a set of bins {xsk , ..., xsk+1−1} is denoted by
an interval [sk, sk+1 − 1]. Note that s1 = 1 and sK+1 − 1 = N.
In this way, the cloaking strategy s for a count vector can be
presented by a length-K vector with each entry representing a
border between two neighbor cloaks, i.e., s = [1, ..., sk, ..., sK].

A cloaking strategy is optimal in the sense of minimal
information distortion. We measure the information distortion
by the sum of squared errors between the estimated count and
the true count for each bin. We assume that the count for any
bin in a cloak is estimated by the average bin count in the
cloak, i.e., y =

∑n
i=1 xi

n , where y denotes the estimated count for
an n-bin cloak and xi is the true count for the ith bins in the
cloak. Then, the sum of squared errors is given by

E(s, x) ,
K∑

k=1

sk+1−1∑
i=sk

(yk − xi)2, (9)

where yk =
(∑sk+1−1

i=sk
xi

)
/(sk+1 − sk), sk ∈ s for all k = 1, ...,K,

and sK+1 is set to be (N + 1). Note that yk is the estimated
count for any bin in the kth cloak, i.e., the count for the ith
bin where ∀i ∈ [sk, sk+1 − 1] is estimated by yk.

Accordingly, the problem of finding the optimal cloaking
strategy is to identify a strategy vector s so that E(s, x) is
minimized, where x is the aggregated count vector given by
x =

∑
p x(p). However, only a perturbed version x̂ =

∑
p x̂(p)

is available to the LSP. To solve this problem, the LSP first
identifies an optimal cloaking strategy with respect to the
perturbed count vectors x̂ rather than x by running Algorithm
2. Then, we show that the optimal cloaking strategy with the
minimal expected E(s, x̂) is equivalent to the optimal strategy
with the minimal expected E(s, x).

We formulate the problem as follows. T (i, k) is denoted
as the minimal error of any cloaking with exactly k cloaks
covering a perturbed partial count vector x̂ = [x̂1, ..., x̂i], and
Er( j1, j2; x̂) is denoted as the squared error for an internal
[ j1, j2] with respect to x̂, i.e., Er( j1, j2; x̂) =

∑ j2
i= j1

(y j − x̂i)2

where y j =

∑ j2
i= j1

x̂i

j2− j1+1 . Therefore, the problem of identifying a
cloaking strategy s with minimal E(s, x̂) can be solved by the
dynamic programming with the recursive rule described as:

T (N,K) = min
K−1≤i≤N−1

{T (i,K − 1) + Er(i + 1,N; x̂)}. (10)

Solving this dynamic programming problem requires time
complexity of O(N2K) and space complexity of O(NK). After
identifying the optimal cloaking strategy s∗ via (10), the LSP
sends s to each SP (Line 5 in Algorithm 2).

E. Cloaking and Collaborative Sensing

As depicted in Fig. 2, after receiving the optimal cloaking
strategy s∗ and corresponding count vector ẑ (Line 5 in
Algorithm 2), each SP performs cloaking in a distributed way.
For an SP p, its projected values {tu : u ∈ U(p)} are cloaked
according to the optimal cloaking strategy s∗. Then, a set of
the original sensing data {ru : u ∈ U(p)

i } is cloaked together
if their corresponding projected values {tu : u ∈ U(p)

i } are
cloaked, where U(p)

i ⊆ U
(p). For the original sensing vector, a

cloak is presented by a vector of intervals where each interval
corresponds to a channel and contains all the RSS values of
that channel in the cloak. The counts for cloaks are obtained
directly from ẑ.

Note that s∗ is optimized considering the sensing data from
all SPs, and ẑ is the count statistics from all SPs. Thus, the
cloaking result contains statistical information from all SPs.
Based on the statistical information contained in the cloaking
results, each SP can perform general collaborative sensing
schemes (e.g., [6]–[8], [29]). Our framework can be applied
to general centralized collaborative sensing schemes as
categorized in [29]. The centralized collaborative sensing
schemes leverage different techniques, including hypothesis
testing [6], [7], collaborative filtering [8], equal gain com-
bination [9], and so on. The cloaking results can be easily
applied to these techniques. Recall that the basic steps of these
collaborative sensing techniques include: (i) collecting sensing
data from multiple SUs and storing the data in a vector or
a matrix, in which each entry is an RSS value on a channel
reported by an SU, (ii) making the final sensing decision based
on a certain aggregation function, which extracts statistical
information from the sensing data. As such, the final decision
of collaborative sensing is based on statistical information
about the aggregated sensing data rather than sensing data
from any individual SU. As the cloaking results maintain
statistical information from the sensing data, the final decision
can be made by posting statistical queries over the cloaking
result. For example, we can request a histogram of the
aggregated sensing data and then leverage curve fitting
to derive the probability density function (PDF), based
on which hypothesis testing or collaborative filtering can
be smoothly performed for collaborative sensing. Another
way to derive the final decision based cloaking results is
to first reconstruct the sensing data using interpolation, and
then directly apply traditional collaborative sensing schemes
using the reconstructed data. As both statistical queries and
data reconstruction can provide the statistical information
for collaborative sensing, the traditional collaborative sensing
schemes are still applicable. We illustrate the above methods
with an example where the aggregated sensing data is
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partitioned into three cloaks whose ranges are [-60dBm,-
80dBm], [-80dBm,-90dBm], [-90dBm,-104dBm], with cor-
responding counts being 5, 2, 2. Collaborative sensing is
performed by matching the aggregated sensing data to
either “available” hypothesis or “occupied” hypothesis as
described in [6], [7]. We can derive the PDF of the cloaking
data using curve fitting, and then generate synthetic
sensing data, which is fed into the hypothesis testing
scheme to determine whether the channel is occupied. Or
we can directly generate linearly interpolated sensing data
for each cloak as [-62dBm, -66dBm, -70dBm, -74dBm, -
78dBm], [-82.5dBm, -87.5dBm], [-93.5dBm, -100.5dBm],
and treat these vectors as inputs for hypothesis testing.

IV. Privacy and Accuracy Analysis
This section proves the privacy guarantees achieved by the

proposed framework, analyzes its impact of on collaborative
sensing performance.

A. Differential Privacy Analysis

Possible privacy leakages are involved with privacy preserv-
ing projection (sharing constraints and projection vector) and
cloaking strategy sharing.

First, we quantify the privacy guarantee offered by privacy
preserving projection (Algorithm 1), in which there are two
steps involving information sharing among SPs. The first step
is sending constraints ĉ(p)

i j to the LSP, and its privacy level is
quantified by the following lemma.

Lemma 1 The mapping {ri, r j} → ĉ(p)
i j ,∀i, j ensures ε1-

differential privacy.

Proof: We first derive the sensitivity of the mapping {ri,
r j} → ĉ(p)

i j ,∀i, j. w.l.o.g, we assume that rih changes and all
other entries in ri, r j stay the same. For the entry in c(p)

i j that
involves rih can be written as cg(h−1) = rihrig +r jhr jg−2rihr jg, or
ch(g−1) = rigrih +r jgr jh−2rigr jh, where 1 ≤ h, g ≤ H, and cg(h−1),
ch(g−1) are the g(h−1)th, h(g−1)th entries in c(p)

i j , respectively.
We denote the sensitivity of cg(h−1), ch(g−1) as ∆cg(h−1), ∆ch(g−1).
Since 0 ≤ rih ≤ 1, we have ∆ch(g−1) = |rig| ≤ 1, ∆cg(h−1) = |rig−

2r jg| ≤ 2 when h , g, and ∆ch(h−1) = max{r2
jh, (1 − r jh)2} ≤ 1.

Thus, ∆c(p)
i j =

∑
g(∆ch(g−1) + ∆cg(h−1)) = 3H − 1.

For brevity, we use ci j to denote c(p)
i j . Denote c′i j as

the constraint after one entry of ri or ri changes. ci j(k),
c′i j(k) are the entries of c(p)

i j and c′i j, respectively. Note that
ĉi j(k) is derived by injecting Laplace noise to ci j(k), that is,(
ĉi j(k) − ci j(k)

)
∼ Lap( 3H−1

ε1
). Denote the noisy version of c′i j(k)

as ĉ′i j(k), we have
(
ĉ′i j(k) − c′i j(k)

)
∼ Lap( 3H−1

ε1
). Note that the

laplace random noise has the following property:

Pr[ĉi j(k) − ci j(k) = O1]
Pr[ĉ′i j(k) − c′i j(k) = O2]

≤ exp
(
ε1|O1 − O2|

3H − 1

)
, (11)

where O1,O2 are any possible values of the random variables(
ĉi j(k) − ci j(k)

)
,
(
ĉ′i j(k) − c′i j(k)

)
.

Thus, for any possible value of random variables ĉi j(k),
ci j(k), denoted as Ok we have

Pr[ĉi j(k) = Ok]
Pr[ĉ′i j(k) = Ok]

=
Pr[ĉi j(k) − ci j(k) = Ok + ci j(k)]
Pr[ĉ′i j(k) − c′i j(k) = Ok + c′i j(k)]

≤ exp
 ε1|c′i j(k) − ci j(k)|

3H − 1

 . (12)

Denote any possible value of ĉi j(k) as O. Since noises are
independently injected to each entry of ci j, thus

Pr[ĉi j = O]
Pr[ĉ′i j = O]

=
∏

k

Pr[ĉi j(k) = Ok]
Pr[ĉ′i j(k) = Ok]

≤ exp
 ε1

∑
k |c′i j(k) − ci j(k)|

3H − 1


≤ exp

 ε1 ‖ ĉi j − ĉ′i j ‖1

3H − 1

 = exp (ε1) . (13)

The last inequality stands since the sensitivity of ci j is at
most 3H − 1 according to [23]. According to Definition 1, the
mapping ri, r j → ĉ(p)

i j provides ε1-differential privacy.
Another information sharing step in privacy preserving

projection is sending count vector x̂(p) to the LSP.

Lemma 2 The mapping {ru : u ∈ U(p)} → x̂(p) preserves ε2-
differential privacy.

Proof: This is a standard Laplace mechanism application
for count query. For the detailed proof please refer to [23].

Based on Lemma 1 and Lemma 2, we derive the privacy
level guaranteed by the projection in the following theorem.

Theorem 1 Algorithm 1 ensures (ε1 + ε2)-differential privacy.

Proof: In Algorithm 1, , ri, r j → ĉ(p)
i j and ru → t̂u are

the only two computations on the sensing data, and each
provides differential privacy. Thus, according to sequential
composition [30], the overall algorithm achieves (ε1 + ε2)-
differential privacy.

Next, we analyze the privacy level of sharing cloaking
strategy and cloak counts. Since Algorithm 2 runs within the
LSP and requires no extra information from SPs (collecting
x̂(p) is executed in Algorithm 1), no extra information about
SUs’ sensing data leaks in the execution of Algorithm 2. Thus,
s∗ and ẑ contain no more private information than x̂, which is
formally concluded in the following lemma.

Lemma 3 The mapping x̂→ {s∗, ẑ} leaks no private informa-
tion about {ru}.

Based on the above analyses, we can use the sequential
composition [30] to derive an overall privacy measure of the
proposed framework by the following theorem.

Theorem 2 The proposed framework is (ε1 + ε2)-differentially
private.

Proof: Similar to the proof of Theorem 1, we can use
the sequential composition [30] in differential privacy. In the
framework, three computations are carried out on the original
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sensing data, that is, ri, r j → ĉ(p)
i j and ru → t̂u in Algorithm

1, and performing cloaking on {ru} (the cloaking block in
Fig. 2, described in Section III-E). The two computations in
Algorithm 1 are proved to be (ε1 + ε2)-differentially private by
Theorem 1. Cloaking on {ru} consists of two parts: cloaking
counts and cloak intervals. The cloaking counts are obtained
directly from ẑ} without accessing the original sensing data.
Only the cloak intervals is computed from the original sensing
data. Since each SP performs cloaking according to the same
cloaking strategy s∗, the cloak intervals are the same from
all SPs, and thus, leaks no private information. Therefore,
according to sequential composition, the overall algorithm
achieves (ε1 + ε2)-differential privacy.

B. Privacy Analysis Under Different Types of Attacks

We analyze the privacy level achieved by the proposed
framework under three different types of attacks described in
Section II-B: SP Attack, SU Attack, and SP-SU Collusion
Attack. In the SP Attack, multiple SPs and the LSP may
collude to compromise the privacy of SUs served by a target
SP. Note that SPs only share information with the LSP, i.e.,
the constraints and count vector. Thus, by simply extending
Theorem 1, we derive the following corollary.

Corollary 1 Assume that the target SP that SP adversaries
try to attack is p ∈ P. Denote Pr[ru] as the priori belief of
adversaries on SU u’ sensing data, and denote Pr[ru|AS P] as
the posterior belief on SU u’s sensing data after launching the
SP Attack, where AS P denotes the event of the SP Attack. For
any SU u ∈ U(p), the difference in adversaries’ beliefs on ru

rendered by the SP Attack is bounded by∣∣∣∣∣ln Pr[ru = v|AS P]
Pr[ru = v′|AS P]

− ln
Pr[ru = v]
Pr[ru = v′]

∣∣∣∣∣ ≤ ε1 + ε2, (14)

where v and v′ are any possible values of ru.

Proof: First, we interpret differential privacy from the
viewpoint of an adversary. (1) can be rewritten as∣∣∣∣∣ln Pr[O|R,M]

Pr[O|R′,M]

∣∣∣∣∣ ≤ ε. (15)

We denote R̂ = [r1, ..., ru−1, ru+1..., rU], and assume that each
SU’s sensing data is independent of each other [6], [7].
Applying Bayesian rule on the LHS of (15), we have∣∣∣∣∣ln Pr[O|R,M]

Pr[O|R′,M]

∣∣∣∣∣ =

∣∣∣∣∣∣ln Pr[ru|O, R̂,M] Pr[r′u|R̂,M]

Pr[r′u|O, R̂,M] Pr[ru|R̂,M]

∣∣∣∣∣∣
=

∣∣∣∣∣∣ln Pr[ru|O] Pr[r′u]
Pr[r′u|O] Pr[ru]

∣∣∣∣∣∣ . (16)

Combining (15) and (16), we derive

e−ε ·
Pr[ru]
Pr[r′u]

≤
Pr[ru|O]
Pr[r′u|O]

≤ eε ·
Pr[ru]
Pr[r′u]

. (17)

e−ε and eε approach 1 as ε decreases, which implies that
adversaries obtain roughly no extra information about SU’s
sensing data by observing O, given the condition that ε is
small enough.

Based on the above analysis, we prove this corollary as
follows.

The SP Attack is based on the information extracted from
constraints and count vectors. According to Theorem 1, send-
ing constraints and count vectors to the LSP preserves (ε1+ε2)-
differential privacy. Then, based on (17), we can easily derive
the formula in this corollary.

As shown in the above corollary, the level of privacy
preserved under the SP Attack is given by (ε1+ε2). The smaller
(ε1+ε2) ensures a tighter bound on the difference of adversaries
beliefs on ru rendered by the SP Attack, which means that less
private information is leaked under the SP Attack.

Similar to Corollary 1, we measure the privacy level
achieved under the SU Attack using the following corollary.

Corollary 2 Assume that the target SU that SU adversaries
try to attack is u ∈ U. Denote Pr[ru] as the priori belief of
adversaries on SU u’ sensing data, and denote Pr[ru|AS U] as
the posterior belief on SU u’s sensing data after launching
the SU Attack, where AS U denotes the event of the SU Attack.
The difference in adversaries beliefs on ru rendered by the SP
Attack is bounded by∣∣∣∣∣ln Pr[ru = v|AS U]

Pr[ru = v′|AS U]
− ln

Pr[ru = v]
Pr[ru = v′]

∣∣∣∣∣ ≤ ε2, (18)

where v and v′ are any possible values of ru.

Proof: SU Adversaries launch an SU Attack based on the
feedback results from SPs. The feedback results are output by
the spectrum learning algorithm which takes the cloaked data
as input. As stated in the proof of Theorem 2, the cloaked
data contains no extra private information other than the
information contained in s? and ẑ. Then, based on Proposition
3 and Lemma 5, we derive that the mapping from the original
sensing data to the feedback results is ε2-differential private.
Thus, similar to the proof of Corollary 1, we derive the formula
in this corollary according to (17).

As for SP-SU Collusion Attack, we derive the following
corollary by simply extending Theorem 2.

Corollary 3 Assume that the target SU that SP and SU
adversaries collude to attack is u ∈ U. Note that the SP
that serves u is assumed to be trustworthy and is not in the
collusion. Denote Pr[ru] as the priori belief of adversaries on
SU u’ sensing data, and denote Pr[ru|AS P] as the posterior
belief on SU u’s sensing data after launching the SP Attack,
where AS P,S U denotes the event of the SP-SU Collusion Attack.
The difference in adversaries beliefs about ru rendered by the
SP Attack is bounded by∣∣∣∣∣∣ln Pr[ru = v|AS P,S U]

Pr[ru = v′|AS P,S U]
− ln

Pr[ru = v]
Pr[ru = v′]

∣∣∣∣∣∣ ≤ ε1 + ε2, (19)

where v and v′ are any possible values of ru.

Proof: Theorem 2 proves that the framework is (ε1 + ε2)-
differential private, which measures the privacy level achieved
when all outgoing messages from u’s serving SP are consid-
ered together. Thus, even all other SUs and SPs (except u’s
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serving SP) collude, the information about u’s sensing data
is no more than the information contained in all outgoing
messages from u’s serving SP. Therefore, the formula in this
corollary can be proved according to (17).

Note that the LSP is untrusted and can launch the SP
Attack and the SP-SU Collusion Attack, which is already
considered in Corollary 1 and Corollary 3. Thus, our
framework still ensures differential privacy for the SUs
served by other SPs even when the LSP is compromised.
However, we make the assumption that the LSP is honest
to its own SUs and the SUs’ data is safe to be kept at
their own SPs. Therefore, if the LSP is compromised by
another malicious party, the privacy of the SUs served by
the LSP is compromised while the privacy of other SUs is
still preserved. In this case, we can employ certain single-
SP privacy preservation mechanisms, e.g., [9], to prevent
the privacy breach of the SUs served by the compromised
LSP.

C. Impact on Sensing Performance

In the following, we provide some theoretical analysis
on the expected error incurred by cloaking. To validate the
cloaking strategy derived by Algorithm 2, we need to compare
(i) the error of the cloaking using s on the perturbed count
vector x̂, and (ii) the error of the same cloaking on the true
count vector x. First, we analyze the error introduced by
merging consecutive noisy counts into a single cloak. The
expected error of a cloak on the perturbed count vector is
derived by the following lemma.

Lemma 4 Given a cloak that is constructed by merging all
counts in a perturbed partial count vector [x̂ j1 , ..., x̂ j2 ], the
corresponding true count vector is [x j1 , ..., x j2 ]. The expected
sum of squared error with respect to [x̂ j1 , ..., x̂ j2 ] is

E[Er( j1, j2; x̂)] =

j2∑
i= j1

x2
i −

(∑ j2
i= j1

xi

)2

j2 − j1 + 1
+

2P( j2 − j1)
ε2

2

. (20)

Proof: Note that x̂ =
∑

p x̂(p), p ∈ P, and each entry
in x̂(p) is perturbed by an independent random noise Lap( 1

ε2
)

according to Line 16 in Algorithm 1.
Er( j1, j2; x̂) is defined by Er( j1, j2; x̂) =

∑ j2
i= j1

(y j − x̂i)2

where y j =

∑ j2
i= j1

x̂i

j2− j1+1 .

E[Er( j1, j2; x̂)]

= E

 j2∑
i= j1

(
y j − x̂i

)2
 = E


j2∑

i= j1

∑
p

x̂(p)
i

2

−

(∑ j2
i= j1

∑
p x̂(p)

i

)2

j2 − j1 + 1


=

j2∑
i= j1

x2
i −

(∑ j2
i= j1

xi

)2

j2 − j1 + 1
+ E

 j2∑
i= j1

∑
p

(
x̂(p)

i − x(p)
i

)2
−

1
j2 − j1 + 1

E


 j2∑

i= j1

∑
p

(x̂(p)
i − x(p)

i )


2 . (21)

Note that x̂(p)
i is derived by injecting random Laplace

noise to x(p)
i , i.e.,

(
x̂(p)

i − x(p)
i

)
∼ Lap( 1

ε2
). We have

E
[(

x̂(p)
i − x(p)

i

) (
x̂(p)

l − x(p)
l

)]
= 0,∀i , l, E

[(
x̂(p)

i − x(p)
i

)2
]

= 2
ε2

2
,

and E[x̂(p)
i − x(p)

i ] = 0. Thus, we have

E

 j2∑
i= j1

∑
p

(
x̂(p)

i − x(p)
i

)2 − 1
j2 − j1

E


 j2∑

i= j1

∑
p

(x̂(p)
i − x(p)

i )


2

= E


j2∑

i= j1

∑
p

(
x̂(p)

i − x(p)
i

)2
−

∑ j2
i= j1

∑
p

(
x̂(p)

i − x(p)
i

)2

j2 − j1 + 1


=

2P( j2 − j1 − 1)
ε2

2

. (22)

Based on (21) and (22), we derive

E[Er( j1, j2; x̂)] =

j2∑
i= j1

x2
i −

(∑ j2
i= j1

xi

)2

j2 − j1 + 1
+

2P( j2 − j1)
ε2

2

. (23)

Note that Lemma 4 estimates the sum of squared error of a
cloak with respect to the perturbed count vector. The following
lemma derives the expected sum of squared error of a cloak
with respect to the true count vector.

Lemma 5 Given a cloak that is constructed by merging all
counts in a perturbed partial count vector [x̂ j1 , ..., x̂ j2 ], the
corresponding true count vector is [x j1 , ..., x j2 ]. The expected
sum of squared error with respect to [x j1 , ..., x j2 ] is

E[Er( j1, j2; x)] =

j2∑
i= j1

(xi)2 −

(∑ j2
i= j1

xi

)2

j2 − j1 + 1
+

2P
ε2

2

. (24)

Proof: Note that the estimated count y j for each bin in
the cloak is given by y j = (

∑ j2
i= j1

x̂i)/( j2 − j1 + 1). Similar to
the proof of Lemma 4, we derive E[Er( j1, j2; x)] as follows.

E[Er( j1, j2; x)] =

j2∑
i= j1

x2
i −

2
(∑ j2

i= j1
xi

)2

j2 − j1 + 1
+

E
[(∑ j2

i= j1

∑
p x̂(p)

i

)2
]

j2 − j1 + 1

=

j2∑
i= j1

x2
i −

(∑ j2
i= j1

xi

)2

j2 − j1 + 1
+

2P
ε2

2

. (25)

Lemma 4 and Lemma 5 show the expected sum of squared
errors of a single cloak. Based on these two lemmas, we derive
the following theorem.

Theorem 3 Finding an optimal s by minimizing E[E(s, x̂)]
leads to the solution that minimizes E[E(s, x)], i.e.,

arg min
s
E[E(s, x̂)] = arg min

s
E[E(s, x)]. (26)

Proof: Denote that e( j1, j2) =
∑ j2

i= j1
(xi)2 −

(
∑ j2

i= j1
xi)2

( j2− j1+1) . We
can simply extend the analysis from one cloak to multiple
cloaks based on Lemma 4 and Lemma 5 as follows.

E[E(s, x̂)] = E[
K∑

k=1

Er(sk, sk+1 − 1; x̂)]

=

K∑
k=1

e(sk, sk+1 − 1) +
2PK
ε2

2

. (27)
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Similarly, we derive

E[E(s, x)] = E[E(s, x̂)] +
2P(N − 2K)

ε2
2

. (28)

Since 2P(N−2K)
ε2

2
is a constant when s varies, we have

arg min
s
E[E(s, x)] = arg min

s
E[E(s, x̂)]. (29)

Theorem 3 validates Algorithm 2, which aims to identify
the optimal cloaking s∗ with respect to x by minimizing the
sum of squared error with respect to x̂.

Note that before cloaking, the expected sum of squared error
of the perturbed count vector

x̂ =

N∑
i=1

P∑
p=1

2/ε2
2 = 2PN/ε2

2 . (30)

Then, we get the following observation.

Corollary 4 The cloaking s = {xsk , ..., xsk+1−1} reduces the
expected sum of squared error in the perturbed count vector
if ε2 <

√
2PK∑K

k=1 e(sk ,sk+1−1)
.

Corollary 4 shows that if ε2 is small enough, Algorithm 2 can
reduce the overall noises by merging neighbor noisy counts.

Based on the above analyses, we observe that Algorithm
2 obtains the optimal cloaking that minimizes the sum of
squared error that is introduced into the sensing results.
In addition, the overall relative error is proportional to the
number of SPs and is inversely proportional to the privacy
parameter ε2

2 . In the next section, we conduct simulations
to show that our framework has little impact on the sensing
results.

V. Evaluations
In this section, we evaluate the privacy levels achieved by

PrimCos and its impacts on collaborative sensing performance.

A. Simulation Setup
We consider a realistic CRN where 100 SUs and 10 PUs are

randomly distributed within a 5km × 5km square. There are 5
SPs in the CRN and each SU randomly selects a serving SP
with equal probability. The licensed spectrum is divided into
20 channels. We assume that the probability of each PU being
active is uniformly distributed within [0, 1]. For simplicity, it
is assumed that each active PU uses one channel and each
channel is used by at most one PU. An SU u’s normalized
RSS on channel h is based on the model described in [6]:

ruh =
Pu

Po
=

(
do

duh

)a

eXuh , (31)

where Pu, Po are the received primary signal strengths at u and
at a reference distance do = 1, respectively, duh the distance
between u and the PU using channel h, and a = 4 the path
loss exponent. eXuh is the shadowing fading factor following
a Gaussian distribution described by Xuh ∼ N(0, σ), where
σdB = 5.5 dB, σdB = 10σ

ln(10) . The total number of bins N = 50
and the number of cloaks K = 10. Unless explicitly stated
otherwise, we use the above configurations in the simulations.
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Fig. 3. Differential privacy levels with different number of SPs.
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B. Simulation Results

Fig. 3-5 shows the achieved privacy level under different
types of attacks. In Fig. 3-5, ε1 is set to 0.1, and we keep the
overall relative error as a constant, i.e., -5 dB, where the overall
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Fig. 7. Error-Privacy tradeoff of PrimCos

relative error is defined as the ratio of sum of errors on cloak
counts to the overall count. The privacy level is measured by
ε as defined in Definition 1, where a smaller ε implies higher
privacy level. ε is usually set to be less than 1 to preserve
privacy [24], [25]. We see that ε is smaller than 0.6 in all cases
demonstrated in Fig. 3-5, which shows that our framework
provides strong privacy protection for each SU.

Fig. 3 depicts the differential privacy levels in the CRNs
with different numbers of SPs, and shows that the privacy
levels achieved under all three types of attacks are lower (i.e.,
larger ε) with more SPs. This is because ε measures the privacy
level in the worst case, where all SPs collude excluding the
target SP, leading to the result that more sensing data is known
to adversaries when there are more SPs. Fig. 4 shows the
differential privacy levels in the CRNs with different numbers
of SUs, in which the privacy levels under the three types
of attacks increase (i.e., ε decreases) as the number of SUs
increases. This is because ε measures individual privacy, and
more SUs in the CRNs results in more SUs in a cloak, which
makes it harder for adversaries to compromise SU’s privacy.
Fig. 5 depicts that the differential privacy levels stay roughly
the same when varying the number of PUs since the number

of PUs has no impact on the cloaking algorithm. We observe
that the privacy levels provided by PrimCos are the same
under the SP Attack and the SP-SU Collusion Attack. This
is because all outgoing messages from an SU’s serving SP
is protected by (ε1+ε2)-differential privacy in consideration
of the SP-SU collusion, which is consistent with the results
of Corollary 1 and Corollary 3.

Fig. 6 illustrates the overall relative error of PrimCos, which
indicates PrimCos’s impact on the system performance of
collaborative sensing. We set ε1 = 0.1 and ε2 = 0.2, which
provide strong privacy protection according to [24], [25].
It can be seen that in all cases demonstrated, the overall
relative error is less than 1 dB, which can be neglected
considering shadowing fading effect (with noise scale of 5.5
dB). Therefore, we conclude that when the number of SPs
is smaller than 10, and the number of SUs is larger than
60 – which are common cases in CRNs – PrimCos has
little impact on collaborative sensing.

Fig. 7 shows the tradeoff between the collaborative sensing
performance and the SUs’ privacy. Specifically, the overall
error is lower when ε1 or ε2 increases. We also see that ε2
has much stronger impact on the overall error than ε1. This
is because ε2 controls the noise scale of the perturbed count
vector x̂, which directly affects the cloak count noise, while
ε1 only has impact on the selection of the projection space.

VI. RelatedWork

Numerous techniques have been proposed for preserving
privacy by modifying or transforming the original data. Ba-
sically, these techniques can be divided into four main cate-
gories: random perturbation, differential privacy, anonymiza-
tion, and cryptographic methods.

First, random perturbation transforms the original data by
replacing a subset of the data points with randomly selected
values [9], [18], [19]. However, none of them can achieve
the same individual privacy strength provided in this paper.
The only work that studies the privacy issue in the context of
collaborative sensing is by Li et al. [9]. Li et al. [9] identify
a location privacy leakage problem in which an untrusted
fusion center attempts to geo-locate a user by comparing the
differences in aggregated results, and proposes a homomorphic
encryption protocol and a distributed dummy report protocol
to handle different types of attacks. However, the approach
proposed in [9] only considers a single service provider,
while we study the scenario of multiple service providers.
Moreover, it only measures the adversary’s overall uncertainty
on users’ location, which cannot provide the privacy guarantee
at individual level as described in this paper.

In addition, spatial cloaking and anonymization are widely
adopted to preserve privacy in location-based services [16] and
participatory sensing [17], where a value provided by a user
is indistinguishable from those of k − 1 other users, known
as k-anonymity. However, a recent measurement study [22]
has reported that sharing anonymized location data may still
lead to privacy risks. Moreover, none of them has considered
multiple service providers, or user collusion.
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Recently, differential privacy has gained popularity in priva-
cy analysis. McSherry et al. [24] devise a collection of prac-
tical tools for network trace analyses with differential privacy
guarantee. Lee et al. [25] propose a smartphone application
platform that combines support for applications’ functional
needs with differential privacy protection for the smartphone
users. In this paper, we adopt the notion of differential privacy
to quantify privacy leakage, while the privacy preserving
framework is quite different from these works.

The fourth category preserves privacy via cryptographic
techniques. Girao et al. [31] aggregate data based on homo-
morphic encryption, which preserves privacy by performing
certain computations on ciphertext. The limitation of homo-
morphic encryption is that a server must know all the users
that have reported data to compute the final aggregated results.
Secure information aggregation frameworks are proposed in
[32]. Nonetheless, all these methods fall short under the
collusion attacks described in this paper.

Privacy issues in CRNs have been studies recently [9],
[33]–[35]. Liu et al. [33] apply cryptographic tools to
thwart location privacy leakage in dynamic spectrum auc-
tions. Huang et al. [34] propose a truthful spectrum auction
mechanism by introducing a trusted third party. Location
privacy issues in collaborative sensing and database-driven
CRNs are studied in [9], [35]. Different from these studies,
we provide collusion-resistent differential privacy protec-
tion for each individual in the context of multiple SPs.

VII. Conclusion

This paper proposed a privacy preservation framework
called PrimCos for collaborative sensing with multiple SPs.
In PrimCos, each SP transforms the original sensing data
into cloaks that hide individual sensing data yet maintains
overall statistical information. The transformation consists of a
projection that maps the original sensing data within an SP to
a single-dimensional space with minimal data distortion, and
a cloaking algorithm that contains the statistical information
about the overall sensing data across all SPs. The privacy
guarantee and the effectiveness of PrimCos are validated by
both analytical and numerical results.
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