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Abstract—The proliferation of sensor-equipped smartphones
has enabled an increasing number of context-aware applications
that provide personalized services based on users’ contexts.
However, most of these applications aggressively collect users’
sensing data without providing clear statements on the usage and
disclosure strategies of such sensitive information, which raises
severe privacy concerns and leads to some initial investigation
on privacy preservation mechanisms design. While most prior
studies have assumed static adversary models, we investigate
the context dynamics and call attention to the existence of
intelligent adversaries. In this paper, we identify the context
privacy problem with consideration of the context dynamics
and malicious adversaries with capabilities of adjusting their
attacking strategies. Then, we formulate the interactive compe-
tition between users and adversaries as a competitive Markov
decision process (MDP), in which the users attempt to preserve
the context-based service quality and their context privacy in
the long-term defense against the strategic adversaries with the
opposite interests. In addition, we propose an efficient minimax
learning algorithm to obtain the optimal policy of the users and
prove that the algorithm quickly converges to the unique Nash
equilibrium point. Our evaluations on real smartphone context
traces of 94 users demonstrate that the proposed algorithm
largely improves the convergence speed by three orders of
magnitude compared with traditional algorithm and the optimal
policy obtained by our minimax learning algorithm outperforms
the baseline algorithms.

Index Terms—Context sensing, Privacy preservation, Markov
decision process (MDP)

I. INTRODUCTION

The increasing popularity of sensor-equipped smartphones

provides new opportunities for proliferation of context-aware

applications that offer personalized services based on the op-

erating conditions of smartphone users and their surrounding

environments. Such applications effectively use sensors such

as GPS, accelerometer, proximity sensor and microphone to

infer smartphone user’s current context including location,

mobility mode (e.g., walking or driving), and social activities.

Examples of context-aware applications include GeoNote [1]

that reminds a user of something when he is at a particular

location, Running [2] that keeps track of user’s jogging tra-

jectory, and AutoSilent [3] that automatically mutes the phone

when the user is in a meeting.

Although context-aware applications improve user experi-

ences on smartphones, severe privacy issues arise with these
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Fig. 1. An illustration on context privacy.

applications. Nowadays, the growing privacy threats of sharing

location-related context information via context-aware applica-

tions on smartphones have been concerned by both consumers

[4] and governments [5]. Such privacy threats come from the

fact that many smartphone applications aggressively collect

sensing data without clear statements about how to use the

sensing data and whom the sensing data will be shared with.

Untrusted applications may sell such personal information to

advertisers without user’s permission. Enck et al. [6] studied

30 popular Android applications that have access to user’s

location, camera, microphone data, and found that 15 of them

sent users’ information to remote advertisement or analytics

servers. Moreover, malicious adversaries with criminal intent

could hack the applications with such information to pose a

threat to individual security and privacy. Being aware of such

risks, the smartphone users may not allow the applications

to access their sensing data, which, however, disables the

functionalities provided by the context-aware applications, and

thus, causes inconvenience to the users.

To enable smartphone users to enjoy services provided

by smartphone applications with privacy protection, many

existing privacy preserving approaches have been proposed to

explore better tradeoffs between service quality and individual

privacy. Most of these approaches focus on location privacy

[7]–[10], which, however, fall short when applied to context

privacy analysis due to the dynamics of user behaviors and

temporal correlations between contexts. Specifically, smart-

phone users usually transit between different contexts (e.g.,

a user goes to a particular hospital after eating at a coffee

shop), whose sensitivities are different to the users. Moreover,

the contexts are usually correlated, which has already been

studied for different goals [11]–[13]. Thus, the adversaries
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can learn the connections between contexts by exploiting the

temporal correlations, and then use such correlations to infer

user’s sensitive contexts based on their observations on non-

sensitive contexts. For example, in Fig. 1, a context-aware

application may learn that a user regularly follows a trajectory

1→ 2→ 3→ 4. Then, releasing the context information that

the user is at the coffee shop at location 1 may reveal that the

user is very likely to go to the hospital, which is sensitive to the

user. However, the frameworks on location privacy [7]–[10] do

not consider such inference attacks from adversaries knowing

temporal correlations, and thus, are not directly applicable to

context privacy analysis.

To the best of our knowledge, the only existing work on

context privacy protection is MaskIt [12], which assumes

that adversaries take fixed attacking strategies that do not

change over time. However, some adversaries launch contin-

uous online attacks [10] or long-term offline monitoring, in

which case the adversaries may adapt their attacking strategies

over time to gain more benefits. For example, a context-

aware application may sell user’s sensing data to remote

advertisement adversaries, who continuously push context-

related ads or spam to users based on the user’s instant context

information. Note that in the real world, context-based ads or

spam need to be delivered in real time (e.g., NAVTEQ or

AdLocal by Cirius Technologies) as users may lose interest

if the ads do not match current context. In such case, it is

highly possible that the adversaries will adapt their attacking

strategies based on their observations of previous attacking

results and context dynamics.

To satisfy the aforementioned requirements, in this paper,

we model the strategic and dynamic competition between a

smartphone user and a malicious adversary as a competitive

Markov decision process (MDP), where the user preserves

context-based service quality and context privacy against

strategic adversaries. Both offline attack and online attack are

considered. The user’s action is to control the released data

granularity of each sensor used by context-aware applications

in a long-term defense against the adversary, while the ad-

versary’s action is to select which sensing data as the source

for attacks. The interactive competition between the user and

the adversary are considered to last for a number of stages

with the contexts dynamics. Both the user and the adversary

observe previous contexts and their transitions, based on which

both players adjust their future strategies. An efficient minimax

learning algorithm with proved convergence is proposed to

obtain the user’s optimal defense strategy. Compared to tradi-

tional learning algorithm, the proposed algorithm significantly

reduces the computational cost by reducing the dimensions of

state values that need to be updated. We give both analytical

results and evaluations on real smartphone traces to analyze

the factors that affect the user’s optimal defense strategy.

The main contributions of this paper are summarized as

below.

• We identify the context privacy problem in context-aware

applications with adaptable adversaries. We consider dy-

namics of user’s context and powerful adversaries that

know the temporal correlations between contexts and are

capable of adjusting their attacking strategies over time.
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Fig. 2. A mobile phone context sensing system.

These distinct features make existing works inapplicable

to this problem.

• We analyze the context privacy problem via a competitive

MDP formulation. The interactive competition between

smartphone users and adversaries are modeled as a com-

petitive MDP, which captures the distinct features of the

context privacy problem. In particular, we discuss the

cases of both online and offline attacks.

• We devise an efficient minimax learning algorithm with

provable convergence to obtain optimal policies. We im-

prove the efficiency of the learning algorithm by solving

an equivalent problem with reduced dimensions. The

convergence speed is reduced by three orders of mag-

nitude compared with the traditional learning algorithm.

We also prove that the algorithm converges to the Nash

equilibrium (NE) point.

• We use real smartphone context traces of 94 users to

demonstrate the efficacy and efficiency of the proposed

algorithm. The results show that the optimal policy ob-

tained by our minimax learning algorithm outperforms

the baseline algorithms. Promisingly, the results give

guidance to the design of context privacy preserving

mechanisms.

The rest of the paper is organized as follows. Section II in-

troduces the system model. Section III presents the competitive

MDP formulation for the context privacy problem. Section IV

proposes a minimax learning algorithm to obtain the user’s op-

timal defense strategy under online attacks, and Section IV-G

discusses the optimal policy under offline attacks. Section V

describes the performance evaluations, and Section VI reviews

the related works. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

In this section, we describe the model of the mobile phone

context sensing system and the privacy issue when the context-

aware application is untrusted.

A. Context Sensing System

User context. A smartphone user encounters a set of

contexts C = {c1, ..., cn}, including locations, mobility modes,
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and social activities. Due to user’s behaviors and activities,

the user’s contexts keep changing. We assume that all user

activities can be classified into a finite number of elementary

activities such as user’s motion states or locations, and each

user can only perform one activity in one time slot [14],

[15]. The transitions between contexts can be captured by

the Markov model: previous studies [14], [15] have shown

that human behaviors and activities extracted from smartphone

sensors can be modeled well with a two-state Markov chain.

Specifically, at time t, the user’s context is denoted as Ct ∈ C,

which is generated from a Markov model M . According

to the independence property of Markov chains, we have

Pr[Ct = ci|C
1, ..., Ct−1] = Pr[Ct = ci|C

t−1].
Context sensing. Fig. 2 illustrates a smartphone context

sensing system, where a sensor-equipped smartphone runs

untrusted context-aware applications. The smartphone user

senses its environment with multiple sensors (e.g., GPS, Wi-Fi,

microphone) and releases the sensing data to the application

periodically for energy efficiency reasons [11], [12], where

a period is referred to as a time slot in the context sensing

system. It is worthwhile noting that there can be multiple

sensor samples in one period, and the sampling rates can be

different for different sensors. For example, we need multiple

accelerometer samples to determine a user’s motion state in

one period while we only need a single GPS sample to

determine the user’s location. The context-aware applications

provide services based on the user’s contexts, which are

extracted by the applications using certain context recognition

approaches [11], [13].

B. Privacy Issue in Context Sensing

A subset of contexts C are considered to be private contexts

whose disclosure is undesired by the smartphone user. The

user claims a subset of C to be sensitive via special appli-

cations (e.g., Locaccino [16]). The user’s context privacy is

breached if the adversary successfully infers that the user

is in its sensitive context. To protect context privacy, the

user can control the released data granularity of each sensor

via the privacy-preserving middleware (e.g., MaskIt [12]).

The privacy-preserving middleware employs a certain existing

privacy-preserving technique (e.g., [12], [17], [18]) to modify

the raw sensing data before releasing them to the applications.

Context-aware applications can only access user’s data via

the privacy-preserving middleware while they do not have

the permission to access raw sensing data. These applications

provide services based on the user’s contexts, which are

extracted by the applications using certain context recognition

approaches [11], [13]. Normally, the released sensing data with

coarser granularity leaks less information about the user, while

the accuracies of context recognition performed by the context-

aware applications are also compromised.

The context-aware application is untrusted or corrupted, and

is considered to be the adversary. The application collects

users’ data in an authorized manner, but tries to extract users’

private information. As such, the adversary is able to obtain

the released sensing data at the time when the untrusted ap-

plication accesses the data. The adversary is assumed to know

the Markov chain of a user [12]. The sensing data retrieved

by the adversary in a time slot is limited due to computational

constraints (caused by curse of dimensionality when using

private data [8]) or limited bandwidth used for retrieving

data. As the contexts and user’s released data granularity

vary over time, the adversary can adaptively choose different

subsets of sensors to maximize its long-term utility. To protect

smartphone users against all kinds of adversaries, we make the

worst case assumption: the adversary is a malicious attacker

that aims at minimizing user’s utility through a series of

strategic attacks [10]. We consider the following two types

of attacks:

• Offline attack. The adversary passively collects the user’s

sensing data, and infer the user’s personal information,

such as context behaviors and trajectories, via offline

analysis. The adversary can sell the information, which is

considered to be of great value [19]. The user is unaware

of the attack results, i.e., to what extent its privacy is

breached.

• Online attack. The adversary collects the user’s sensing

data and actively infers the user’s instant context informa-

tion based on collected data. Based on the instant context,

the adversary may push context-based spams/scams to

the user, or even make the user a victim of blackmail or

physical violence.

It is worth noting that the common part of both attacks is

that adversaries aggressively collect the user’s sensing data,

while the only departure is whether the adversaries actively

interact with the user in real-time. The type of attacks can be

easily discerned at the user end by checking whether there

exist observable activities from the adversary.

C. Problem Statement

Our goal is to find the optimal defense strategies for users

to preserve privacy against the malicious adversary over a

serial of correlated contexts. In this paper, we discuss the

optimal strategies under both offline and online attacks. Since

the context is considered to keep changing over time and both

the user and the adversary make different actions at different

times, the interactions between the user and the adversary is in

a stochastic setting and should be formulated as a competitive

MDP.

III. PROBLEM FORMULATION

A competitive MDP, or stochastic game, is a dynamic game

with probabilistic transitions played in a sequence of stages.

A two player competitive MDP Γ consists of a six-tuple <

S,A1,A2, r1, r2, P >. S is the discrete state space. Ak is the

action space of player k for k = 1, 2. rk : S ×A1 ×A2 7→ R

is the stage payoff function for player k, where 7→ denotes the

input-output mapping of a function. Note that action spaces of

different players in a stochastic game can be different [20]. P :
S×A1×A2 7→ ∆(S) is the transition probability map, where

∆(S) is the set of probability distributions over S . Note that

both the stage payoff function rk and the transition probability

map P take the set of state S and actionsA1,A2 as the domain

of definition, that is, the stage payoff and state transition rely
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on the system state and players’ actions. The game Γ is played

in a sequence of stages, where each player k receives a stage

payoff rk(s, a1, a2) based on players actions ak ∈ Ak and

current stage s ∈ S . Each player k attempts to maximize

its expected sum of discounted payoffs. In our formation, the

players’ actions are not observable to each other.

In this section, we formulate the privacy problem in mobile

phone context sensing as a competitive MDP.

A. States and Actions

1) System States: In each time slot, the smartphone user is

in a certain context and releases data of multiple sensors to

the context-aware application. The user’s context is included in

the system state as the user’s action depends on its observation

of the current context. Note that the current context is only

observable to the user, while the adversary can only infer

the context based on the modified sensing data and the user’s

Markov model.

System states in online attacks. In the case of online

attacks, previous attack results should also be included in the

system state. As the adversary’s strategy is not known by the

user, the user can only conjecture the adversary’s strategy from

previous attack results, which are assumed to be observable to

the user as online attacks have instant impact on the user. The

reason why next action depends on the previous attack result is

that i) the previous result determines whether the adversary has

correctly inferred the last context, and ii) the current context

is correlated to the last context according to the Markov chain.

For instance, if a user receives an advertisement based on its

current private context, then the user knows that the adversary

successfully inferred this private context; if the user receives

an advertisement based on a context that it has never been

to, then the user knows that the adversary has failed to infer

its true context. Thus, the user should maintain a record of

which contexts the adversary has launched attacks on, and

which contexts have been successfully attacked. The attack

result observed at time t, namely the attack result in the last

time slot, is denoted as Art, whose value can be Art = 1
meaning the adversary successfully infers the context Ct−1,

or Art = 0 meaning the adversary fails to infer the context

Ct−1. In summary, the context and attack result are observable

to the user and affect the user’s decisions. Thus, the state of

the competitive MDP at time t is defined by St
on = {Ct, Art}.

System states in offline attacks. The adversary who

launches offline attacks passively collects sensing data for

offline analysis, and thus the user cannot observe attack results.

Analogous to online attacks, the adversary’s strategy of offline

attacks is not known by the user. Hence, the user can only

observe the current context and the system state in the case of

offline attacks is St
off = Ct.

2) User’s Actions: After observing the state St at each

stage (note that the adversary can only infer Ct based on M ),

the user decides its action for the current stage. As discussed

in Section II, the user controls the granularity of the released

sensing data to protect its context privacy while preserving

the quality of context-based services. For simplicity, we use

the accuracy of context recognition to measure the granularity

of the sensing data, which is assumed to be the weighted

summation of the data granularity of each sensor. The rationale

behind this assumption comes from the generalization tech-

nique, which is widely adopted in location-based services and

data anonymization [7], [21], [22]. The intuition behind the

generalization technique is that when the original data is gen-

eralized to be coarser, it incurs more information loss, while

providing stronger privacy preservation. Formally, the action

of the user at time t is defined as a
t
u = {atu,1, ..., a

t
u,K}, with

each sensor’s data granularity atu,k ∈ [0, 1], ∀k = 1, ...,K,

where K is the total number of sensors used for recognition.

The accuracy of context recognition g (0 ≤ g ≤ 1) based on

a
t
u is given by

g =
K
∑

k=1

κka
t
u,k, (1)

where {κk : ∀k} are the weights measuring the sensitivity

of the sensor’s data granularity to the context recognition

accuracy.

3) Adversary’s Actions: On the other hand, due to the lim-

ited attacking capability, the adversary needs to select a proper

subset of sensing data for retrieval. Mathematically, the adver-

sary’s actions at time t are defined as a
t
a = {ata,1, ..., a

t
a,K},

where ata,k is the probability of retrieving the data of the kth

sensor. The power limitation constraints for the adversary’s

actions are as follows.
∑

k

ata,i ≤ L,

0 ≤ ata,i ≤ 1, ∀k, (2)

where L is the power limitation of the adversary. When L ≥
K, the adversary is able to collect all sensing data. This type

of adversary is referred to as the adversary with unlimited

power, which is discussed in Section IV-E.

4) State Transitions: State transitions in online attack.

The state St is uncertain (due to the uncertainty of Ct) and

depend on the actions of the user and the adversary (Art

depends on the player’ actions). We assume that user behavior

is independent of player’s actions. Then, the state transition

probability can be computed by

Pr[St+1
on |S

t,atu,a
t
a] =Pr[Art+1|Art,atu,a

t
a] Pr[C

t+1|Ct]

=Pr[Art+1|atu,a
t
a] Pr[C

t+1|Ct]. (3)

The second equality holds because Art+1 is the attack results

observed at time t + 1, which only depends on the actions

players made at the last stage.

State transitions in offline attack. As the adversary only

passively collects sensing data – which has no instant impact

on the user – the state transition probability only depends on

the context correlations:

Pr[St+1
off |S

t,atu,a
t
a] =Pr[Ct+1|Ct]. (4)

B. Stage Payoff

After defining the states and actions, we give a concrete

expression of stage payoffs. The payoff function of the user
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is defined to be the quality of the context-based service with

weighted penalty on privacy loss, which is written as

ru(S
t,atu,a

t
a) =QoS(atu)− ω · Pri(St), (5)

where QoS(atu) is the quality of context-based service the

user enjoys, ω the equivalent service quality improvement

caused by unit privacy loss, and Pri(St) the privacy loss.

QoS(atu) is a measure of the user’s degree of satisfaction with

the context-based service and can be modeled as a sigmoid

function of the context recognition accuracy. Sigmoid function

has been widely used to approximate the user’s satisfaction

with respect to service qualities [23]. The rationale behind the

sigmoid function is that the user’s satisfaction remains low

when the service quality grows in a low range; the user’s

satisfaction grows quickly when the accuracy further grows

across a satisfaction threshold; when the accuracy enters a

relatively high range, further improvement becomes marginal

and brings little benefit to the user. Concretely, QoS(atu) is

measured as

QoS(atu) =
1

1 + e−θ(g−η)
, (6)

where θ decides the steepness of the quality of service satis-

factory curve, g the accuracy of context recognition, and η the

satisfaction threshold below which the user has very limited

satisfaction (the function curve is convex) and above which

the user’s satisfaction rapidly approaches an asymptotic value

(the function curve is concave).

Next, we measure the privacy loss of the user based on

the definition of context privacy in [12]. Consider a user over

a day with a context space C and a set of sensitive context

Cs ⊆ C. We say that the released data preserves privacy if

the adversary learns little information about the user being

in a private state from the released data, meaning that for

all sensitive contexts and all times the difference between the

posterior and prior beliefs on the user being in a sensitive

context at that time is limited. Normally, the adversary values

the information of user’s recent contexts more highly than the

information about user’s contexts in the faraway future. Based

on the above intuition, we define context sensitivity as follows.

Definition 1 (Context Sensitivity). The sensitivity of a context

c is defined to be the sum of the discounted differences between

the prior belief and the posterior belief after observing current

context on the user being in each sensitive context in the future,

that is,

Sens(c) =
∞
∑

t=0

∑

cs∈Cs

γt
∣

∣Pr[Ct = cs|C
0 = c]− Pr[Ct = cs]

∣

∣ ,

(8)

where 0 < γ < 1 is the discount factor of the context privacy.

The sensitivity of a context c measures the maximum

information that the adversary can learn about the user’s

sensitive contexts in the future by observing the user being

in c.

Based on the context sensitivity, we define the user’s privacy

loss. In the case of online attacks, if an adversary successfully

infers a user’s current context, the user’s privacy loss is the

sensitivity of the current context. Otherwise, the privacy loss

is zero, as the user’s true context is still unknown to the

adversary. Thus, the privacy loss in the case of online attacks

is expressed as

Prion(S
t,atu,a

t
a) = Sens(Ct)Art+1, (9)

where Art+1 is the attack result known at time t+1, i.e., the

attack result for context Ct. The probability of a successful

attack at time t is Pr[Art+1] =
∑

i κia
t
u,ia

t
a,i.

When the adversary launches offline attacks, the attack

results are unobservable to the user, and thus we cannot

directly measure the privacy loss in each stage. To overcome

this predicament, we consider the worst case: the adversary

always selects the best strategy that cause the most privacy

loss. Therefore, the privacy loss under offline attacks is

Prioff(S
t,atu) = Sens(Ct)max

a
t
a

{

∑

i

κia
t
u,ia

t
a,i

}

. (10)

Then, we decide ω, i.e., the equivalent service quality

improvement caused by unit privacy loss. For each context, we

measure service quality improvement and privacy loss when

the adversary can access all user’s raw sensing data, compared

with the case that the adversary knows nothing. We assume

that the adversary has prior belief of a user’s context based on

its background knowledge (e.g., the adversary knows the user’s

behavior pattern or the Markov chain of the user’s contexts).

Therefore, we express ω as (7), where Pr[Ct = c] is the

adversary’s prior belief on user’s context. Substituting (6) (8)

(9) (7) back into (5), we can obtain the stage payoff for the

user, while the stage payoff for the adversary is the negative

of (5).

Generally, context applications run continuously on a smart-

phone all day long [11], [12]. Thus, we assume that there

is an infinite number of time slots, i.e., the context privacy

game is played for an infinite number of stages. Normally, the

smartphone users care more about the current context or near

future contexts than the faraway future contexts. For example,

a user’s current context is more private since the adversaries

can cause immediate damage to the user. Therefore, the user’s

utility is to the expected sum of discounted stage payoffs,

where the delayed payoffs value less to the user. The dis-

counted stage payoff is defined to be the stage payoff weighted

by a discount factor. Hence, the user’s utility can be expressed

as

Uu = E

[

∞
∑

t=0

γtru(S
t,atu,a

t
a)

]

, (11)

where γ is the discount factor of the context privacy. Then, the

user’s objective is to derive an optimal defense strategy that

maximizes Uu, which is discussed in the following sections.

The adversary aims at minimizing user’s utility through a

series of strategic attacks, and thus its utility is the reverse

of the user’s utility.

IV. LEARNING THE OPTIMAL DEFENSE STRATEGY

Based on the problem formulation in Section III, the context

privacy problem under online attacks is a two-player zero-

sum stochastic game. In this section, we will first discuss the
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ω =

∑

c:c∈C
Pr[Ct = c](QoS(au = 1)−QoS(atu = 0))

∑

c:c∈C
Pr[Ct = c](Pri(atu = 1,ata = 1, Ct = c)− Pri(atu = 0,ata = 1, Ct = c))

, (7)

algorithm to derive the NE of the stochastic game under online

attacks, so as to obtain the optimal policy of the user. Then,

we extend the results to offline attacks.

A. Minimax Equilibrium in the Context Privacy Game

Formally, a policy in a stochastic game is defined to be

a probability distribution over the action set at any state. A

policy π is said to be stationary if πt = π for all t, that is,

the policy is fixed over time. In this paper, we are interested

in stationary policies. In the context privacy stochastic game,

the user’s policy is denoted by πu : S 7→ ∆(Au) and

the adversary’s policy is denoted by πa : S 7→ ∆(Aa),
where S is the state space for St, ∆(Au) and ∆(Aa) the

probability distributions over the user’s action space Au and

the adversary’s action space Aa, respectively.

In stochastic games, utilities are expressed in the form of

state value. Here, the initial state is defined to be the state at

time t = 0, denoted by S0. Given policies πu, πa and a state

s ∈ S , the user’s utility can be written as

V π(s) =
∞
∑

t=0

γt
E[ru(S

t,atu,a
t
a)|πu, πa, S

0 = s]. (12)

Denote the actions a
t
u,a

t
a determined by policies πu, πa to be

a
π
u,a

π
a , respectively. Then, we can rewrite (12) as

V π(s) = ru(s,a
π
u,a

π
a) + γ

∑

s′

Pr[s′|s,aπu,a
π
a ]V

π(s′). (13)

Both user and adversary follow their optimal policies

{π∗
u, π

∗
a} that maximize their own utilities, where the optimal

policies are called an optimal policy pair π∗ = {π∗
u, π

∗
a}. An

optimal policy pair in a stochastic game are the policies at an

NE point, which is defined as follows.

Definition 2 (NE in Stochastic Game). In a zero-sum stochas-

tic game Γ, an NE point is an optimal policy pair π∗ =
{π∗

u, π
∗
a}, such that for all state s ∈ S

V π∗

(s) ≥ V πa

(s), (14)

and

V π∗

(s) ≤ V πu

(s), (15)

where πa = {πu, π
∗
a}, ∀πu, and πu = {π∗

u, πa}, ∀πa.

In the context privacy stochastic game, the user aims to find

the minimax equilibria, where the user tries to determine an

optimal policy π∗
u that maximizes {V π(s) : ∀s}, while the

adversary tries to find an optimal policy π∗
u that minimizes

{V π(s) : ∀s}. Thus, based on (13), we have

V π∗

(s) = max
πu

min
πa

{

ru(s,a
π
u,a

π
a)

+ γ
∑

s′

Pr[s′|s,aπu,a
π
a ]V

π∗

(s′)

}

, (16)

where V π∗

(s) is referred to as the value of state s.

It has been shown [24] that the equilibrium in a zero-sum

stochastic game is the unique minimax equilibrium, and thus

the optimal policy pair in the context privacy game is unique.

B. Equivalent State Value

Based on (31), the optimal policy pair can be derived via

existing reinforcement learning algorithms, e.g. minimax-Q

learning [25]. However, since cardinality of S could be very

large, the complexity of deriving π∗ according to (31) would

be very high. For example, the minimax-Q learning needs to

solve |S| bimatrix games, where |S| is the cardinality of S .

In order to reduce the computational complexity, we solve an

equivalent problem instead.

The equivalent state value Ṽ π∗

u (Ar) is defined to be the

expected state value over the context variable, i.e., Ṽ π∗

u (Ar) =
Ec[V

π∗

u (s)] where s = {Ar, c}. Then, we have the following

observation.

Lemma 1. The equivalent state value Ṽ π∗

u (Ar) can be de-

rived from (31) and enjoys an expression where context c is

eliminated, i.e.,

Ṽ π∗

(Ar) = Ec

[

ru(s,a
π∗

) + γ
∑

Ar′

(

Pr[Ar′|aπ
∗

]Ṽ π∗

(Ar′)
)

]

,

(17)

where a
π∗

= {aπ
∗

u ,aπ
∗

a } is the action pair following the

optimal policy pair π∗.

Proof. See Appendix A.

We can see that Ṽ π∗

u (Ar) largely reduces the number of

state values from |S| or 2|C| to 2 (since Ar is a binary

variable). The following theorem proves that we can derive

the optimal action pair from Ṽ π∗

u (Ar).

Theorem 1. The optimal policy pair π∗ = {π∗
u, π

∗
a} for

the context privacy stochastic game (31) can be obtained by

solving the following equivalent problem

π∗ =argmax
πu

min
πa

{

ru(s,a
π∗

)

+ γ
∑

Ar′

(

Pr[Ar′|aπ
∗

]Ṽ π∗

(Ar′)
)

}

, (18)

Proof. See Appendix B.

C. Efficient Minimax Learning Algorithm

According to Theorem 1, we can derive π∗ by learning

Ṽ π∗

u (Ar), which can be obtained by the following update rule,

which is modified from Q-learning [20].

Ṽ t+1(Ar) =(1− αt+1)Ṽ t(Ar)

+ αt+1
Ec

[

ru(s,a
t
u,a

t
a) + γṼ t(Ar′)

]

, (19)
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Algorithm 1 Minimax Learning Algorithm

Input: The context privacy stochastic game Γ
Output: π∗

// 1. initialization

1: t← 0, Art = 0;

2: Ṽ t(Ar = 0)← 1, Ṽ t(Ar = 1)← 1;

3: Initialize policy pair πt: two uniform distributions where

atu,i =
1
K
, ata,i =

L
K
, ∀i;

// 2. iteration

4: repeat

5: Select an action pair {atu,a
t
a} based on πt;

6: Update Art+1 after both players take their actions

{atu,a
t
a};

7: Update equivalent state value Ṽ t+1(Ar) according to

(19);

8: Update optimal policy πt+1 according to (18) with

updated state values;

9: t← t+ 1;

10: until Converge

where αt ∈ [0, 1) is the learning rate, which needs to decay

over time in order for the learning algorithm to converge. In

this paper, we set αt = 1
t
. Ṽ t+1

u (Ar) is used as an approximate

of Ṽ π∗

u (Ar) and iteratively updates according to (19) until

converges.

Then, the learning algorithm for equivalent state value

Ṽ π∗

u (Ar) is described in Algorithm 1. First we initialize

equivalent state values to be 1, and the policy of each player to

be uniform distribution. Then, we iteratively update equivalent

state values and policy pair according to (19) and (18),

respectively, until the policy pair approaches the optimal policy

pair.

In the following, we validate Algorithm 1 by proving that

the iteratively updated πt converges to the optimal policy

pair. First, we show the convergence of Algorithm 1 by the

following lemma.

Lemma 2. In Algorithm 1, Ṽ t+1(Ar) converges to

Ec

[

ru(s,a
t
u,a

t
a) + γṼ t(Ar′)

]

.

Proof. See Appendix C.

Next, we prove that the convergence point of Algorithm 1

is the true NE point.

Theorem 2. In Algorithm 1, the equivalent state value

Ṽ t+1(Ar) updated by Line 7 converges to the NE Ṽ π∗

(Ar)
defined by (17), and the corresponding optimal policy pair π∗

is the unique NE solution for the context privacy stochastic

game.

Proof. See Appendix D.

D. Properties of Optimal Policies

Note that in order to obtain the equivalent state value

Ṽ t(Ar) at stage t, the user needs to solve the equilibrium of

a stage game, where the value of the game can be expressed

by (19), and the equilibrium can be derived by solving the

minimax problem (18). By substituting (2) (5) (6) (8) (9) (7)

into (18), we write the minimax problem as follows.

max
πu

min
πa

{

1

1 + e−θ(
∑

i κia
t
u,i−η)

−C(c)
∑

i

κia
t
u,ia

t
a,i

}

, (20a)

s.t.
∑

i

ata,i ≤ L (20b)

0 ≤ ata,i ≤ 1, ∀i (20c)

0 ≤ atu,i ≤ 1, ∀i (20d)

where C(c) is a function of the context c that C(c) =

ωSens(c) + γ
(

Ṽ π∗

(Ar′ = 0) −Ṽ π∗

(Ar′ = 1)
)

. Note that

Ṽ π∗

(Ar′ = 0) and Ṽ π∗

(Ar′ = 1) are constant for a certain

user, and thus only depends on the sensitivity of the context

c. According to the definition of state value, i.e., Eq. (12),

it can be seen that Ṽ π∗

(Ar′ = 1) < Ṽ π∗

(Ar′ = 0). Since

Sens(c) ≥ 0, we can see that C(c) > 0.

To solve such minimax problem, we first assume that πu is

fixed. Since C(c) > 0, the adversaries will choose to attack

L sensors with largest κia
t
u,i so as to minimize (20a). Then,

the problem becomes

max
πu,χ,I

{

1

1 + e−θ(
∑

i κia
t
u,i−η)

− C(c)
∑

i∈I

κia
t
u,i

}

,

(21a)

s.t. atu,i ≥ χ, ∀i ∈ I (21b)

atu,j ≤ χ, ∀j ∈ {1, ...,K}\I (21c)

0 ≤ atu,i ≤ 1, ∀i (21d)

where I is a subset of K that contains L sensors with largest

κia
t
u,i. Given a certain I, the closed-form expressions for the

optimal πu can be easily derived. Based on (21a), we have

the following observation on the NE of the context privacy

stochastic game.

Proposition 1. The optimal policy of the adversary is indepen-

dent of the context sensitivity and the state values, but depends

on the sensor’s weights {κi}, while the optimal policy of the

user depends on the context sensitivity, the state values and

the sensor’s weights.

E. Optimal Policies Against The Adversary With Unlimited

Power

The above analyses are based on the assumption that

the adversary’s bandwidth or computational power limits the

amount of sensing data it can access in each time slot. Now

we discuss the case of adversaries with unlimited power, who

can access the whole sensing data released by the user. In

this case, the optimal policy can still be learned by Algorithm
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1, while for each iteration (each stage game) in the learning

process, the minimax problem (20) is changed to

max
πu

{

1

1 + e−θ(
∑

i κia
t
u,i−η)

−C(c) max
πa

∑

i

κia
t
u,ia

t
a,i

}

, (22a)

s.t. 0 ≤ ata,i ≤ 1, ∀i (22b)

0 ≤ atu,i ≤ 1, ∀i (22c)

where the L constraint for a
t
a is removed. It can be easily

max
πa

∑

i κia
t
u,ia

t
a,i =

∑

i κia
t
u,i. Hence, the objective function

(22a) can be written as

max
πu

{

1

1+e
−θ(

∑
i κia

t
u,i

−η)
− C(c)

∑

i κia
t
u,i

}

, (23)

where the closed-form expression for the optimal policy πu

can be derived.

F. Integration with Smartphones

Our solution can be implemented as a middleware in smart-

phones to sanitize raw sensor data and releases the sanitized

data to upper layer applications. We can leverage the sandbox

mechanism in today’s smartphone platforms, such as Android

and iOS, to implement such a middleware. In particular, we

can build a sandbox to confine all untrusted applications, and

use the sandbox to sanitize raw sensor data according to certain

privacy preserving mechanisms before providing the data to

applications.

G. Optimal Strategy Under Offline Attacks

Through our investigations in Section IV, we obtain the

optimal defense strategy under online attacks. In this section,

we study the optimal defense strategy under offline attacks.

Different from the case of online attacks, the user cannot

observe the attack results under offline attacks, and takes

actions based on its own context transitions. The system state

under offline attacks is St
off = Ct. Therefore, the context

privacy problem becomes an optimization problem whose

objective is to maximize the user’s utility:

max
a
t
u

Uu =max
a
t
u

E

[

∞
∑

t=0

γtru(S
t,atu,a

t
a)

]

,

=max
a
t
u

E

[

∞
∑

t=0

γt
(

QoS(atu)− ω · Prioff(S
t,atu)

)

]

,

=max
a
t
u

E

[

∞
∑

t=0

γt

(

QoS(atu)

−ω · Sens(Ct)max
a
t
a

{

∑

i

κia
t
u,ia

t
a,i

}

)

]

. (24)

To derive an optimal policy that maximizes the user’s utility

under offline attacks, we have the following observation.

Theorem 3. The policy that maximizes each stage’s payoff is

the optimal policy that maximizes the user’s utility. That is,

π∗
u = argmax

πu

{ru(s,a
π
u,a

π
a)} . (25)

Proof. See Appendix E.

Then, the optimal policy can be obtained by solving a stage

minimax problem similar to (20). Note that in the case of

adversaries with unlimited power, the optimal policies still

conform to Theorem 3.

V. EVALUATION

In this section, we conduct trace-driven simulations to eval-

uate the smartphone user’s payoffs under the privacy attack.

Specifically, we construct the user’s behaviors and contexts

based on real dataset, while simulating the adversary’s actions

based on the model as defined in Section III. First, we show the

proposed algorithm largely improves the convergence speed

compared with the traditional learning algorithm. Then, we

demonstrate the effectiveness of the proposed algorithm by

comparing the sum of discounted payoffs when the user adopts

different strategies. We also study how the user’s utility and

strategies are affected by some system parameters.

A. Setup

The user model, system parameters, and baselines used for

evaluation are described as follows.

• User Model. We evaluate the performance of our

proposed algorithm using the Reality Mining dataset1,

which was collected by the MIT Media Laboratory from

September 2004 to June 2005 [26]. The Reality Mining

dataset is one of the most complete and large-scale

smartphone mobility traces, and is actively be used as

the real-world traces for human mobility model. It records

the continuous activities of 94 students and staff at MIT

equipped with Nokia 6600 smartphones, which are pre-

installed with several pieces of software that collects

data about call logs, Bluetooth devices in proximity

of approximately five meters, location at granularity of

cell tower, application usage, transportation model (e.g.,

driving, walking, stationary), etc. The total length of all

subjects’ traces combined is 266,200 hours, with average,

minimum, and maximum length being 122 days, 30

days, and 269 days, respectively. As location is the most

complete and fine-grained context in the dataset, we select

location traces as the user’s contexts in our evaluation.

The average, minimum, and maximum numbers of loca-

tions per user is 19, 7, and 40, respectively. Based on the

location traces, we train a Markov chain for each user.

We use the first half of each user’s trace as the training

set, and the other half as the testing set. We construct

a Markov model for each user based on the transition

probabilities computed from the training set. Then, we

simulate user’s behaviors based on the trained Markov

1http://realitycommons.media.mit.edu/realitymining.html
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chain. For each user, a certain percentage p of contexts

are selected as sensitive contexts.

• System Parameters. Unless explicitly otherwise stated,

we use the following system parameters in our simula-

tions. For each user, the percentage of sensitive contexts

p is set to 0.5, satisfaction threshold η set to 0.7, QoS

steepness θ set to 10, the discount factor γ set to 0.8.

According to [11], there are three sensors (i.e., GPS,

WiFi, and Bluetooth) used to identify user’s location

contexts. Thus, we set the number of sensors needed

to identify the context to 3, and the power limitation

of the adversary L is set to 2. The weights of sensors

{κi : i = 1, ...,K} are set to the normalized values

drawing from a uniform distribution.

• Baselines. We compare the convergence speed of the

proposed algorithm and that of the traditional learning

algorithm that learns state values directly according to

(31). We also compare the performance of users adopting

different strategies. We compare the optimal policies ob-

tained by the proposed algorithm (denoted by proposed)

with fixed strategy and myopic strategy. The fixed strategy

draws an action that uniformly sets the granularity of

each sensor to 1
K

. And the myopic strategy is the optimal

policy obtained by myopic learning, where the effects of

current actions on the future payoffs are ignored, i.e., γ

is considered to be 0 in the myopic learning.

B. Results
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Fig. 3. CDF of convergence speed.

1) Convergence Speed: We first show the convergence

speed improved by the proposed algorithm in Fig. 3. Fig. 3

depicts the cumulative distribution function (CDF) of iterations

needed to learn the optimal policies for all users in the Reality

Mining dataset. We can see that the convergence speed of the

proposed algorithm for all users are less than 220 iterations,

while for more than half of the users, the convergence speed of

the traditional algorithm are more than 105 iterations, which

demonstrates that the proposed algorithm largely improves

the convergence speed compared with traditional learning

algorithm. The improvement of the proposed algorithm comes

from the smaller cardinality of the equivalent state value,

which eliminate the context dimension in the learning process.

2) Comparison of Different Strategies Under Online At-

tacks: Fig. 4 compares the performance of the smartphone

user when it adopts different strategies to evaluate the pro-

posed algorithm under online attacks. It is assumed that the

adversaries use their optimal stationary policy learned by the

minimax algorithm. As shown in Fig. 4, the proposed and the

myopic strategies achieve higher sum of discounted payoffs

than the fixed strategy against the adversaries with different

power limitations, since the former two strategies maximize

the worst-case performance, while the fixed strategy takes

actions without considering the adversary’s actions. Moreover,

the proposed strategy achieves highest sum of discounted

payoff. This is because the proposed strategy also takes the

future payoff into consideration when optimizing the current

strategy. Therefore, when smartphone users are under attack

from adversaries that are capable of dynamically changing

their strategies, the best choice is to adopt the strategy learned

from the proposed algorithm that considers future payoff and

the dynamics of the adversaries.

Moreover, comparing Fig. 4(a), Fig. 4(b), and Fig. 4(c),

we can see that sum of discounted payoff achieved by the

proposed strategy goes down as the power limitation of the

adversaries L increases. This is because as L increases, the

adversaries are able to access more sensing data, it is more

likely for the adversaries to successfully attack the user. In

such situation, the user may take more conservative actions

(i.e., releasing data with less granularity), which results in

lower service quality, or the user take the same action to

preserve service quality, which, however, causes more privacy

loss. As such, either case leads to lower payoff.

In the following, we show how the percentage of sensitive

contexts and satisfaction threshold affect the sum of discounted

payoff, and we also depict the optimal policies in different

contexts. These evaluation results can provide some guidance

in the design of the context privacy preserving schemes.

The average sums of discounted payoff of all users are

reported in Fig. 5 and Fig. 6. From Fig. 5, we can see that

the sums of discounted payoff achieved by the proposed and

myopic strategies get lower as the percentage of sensitive

contexts increases, since it would cost more privacy loss to

release the same amount of data when the users have more

sensitive contexts. The sum of discounted payoff achieved

by the fixed strategy stays relatively the same over different

percentage of sensitive contexts, because the service quality

is invariant and dominates the payoff when adopting the fixed

strategy. Moreover, the gap between the sums of discounted

payoff obtained by adopting the proposed and myopic strate-

gies approaches to zero when the percentage of sensitive

contexts goes down. This is because the consideration of future

payoff only affect the weights of privacy loss in the sum

of discounted payoff according to (20a), and both strategies

pay more attention to the service quality part when there are

fewer sensitive contexts, which reduces the difference between

with (the proposed strategy) and without (the myopic strategy)

consideration of future payoff. This observation can provide

some guidance for the context privacy preserving schemes that

for the users with a small faction of sensitive contexts, the

impact of current actions on the future payoff can be neglected

so as to design more efficient algorithm.

Fig. 6 reports the sums of discounted payoff achieved

by different strategies over the applications with different

satisfaction thresholds. It can be seen that for the applications
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Fig. 4. Sum of discounted payoff of different strategies.
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Fig. 10. Sum of discounted payoff vs. satisfaction
threshold.

with higher satisfaction threshold, the sums of discounted

payoff achieved by all strategies go down, since the service

quality is lower as satisfaction threshold increases. We can

also see that when the satisfaction threshold is very low,

say 0.2, the differences in the sums of discounted payoff are

achieved by different strategies are quite small. It can be seen

according to (5) (6) (9) that with low satisfaction threshold,

high service quality is easily achieved with only slight privacy

loss by contributing a small amount of data, which are the

cases of adopting the proposed and the myopic strategies.

As such, the service quality dominates the payoff and stays

relatively the same over different strategies. Thus, the privacy

leaked by the applications that require high accuracy is hard

to preserve, and the privacy preserving schemes need to be

carefully designed to find a good tradeoff between privacy

and utility since different strategies have significant impact on

the user’s total payoff.

Next, we study the optimal strategy in contexts with differ-

ent sensitivities. To control the value of context sensitivity,

we use the average values of the state values of all users

as the state values. We denote the total amount of released

data a =
∑

i κia
t
u,i and the amount of information leaked

to the adversary b =
∑

i κia
t
u,ia

t
a,i, which represent the

optimal strategies. Fig. 7 depicts the variance of optimal a, b

obtained by the proposed algorithm when the users are in

different contexts. It can be seen that when the sensitivity

of current context is smaller than 0.25 or larger than 0.87,

the optimal a equals to 1 or 0, respectively. In such cases,

either the variance of the service quality or the variance of

the privacy loss dominates. While when the context sensitivity

falls between 0.25 and 0.87, a and b slightly go down with the

increment of the context sensitivity, since the users choose a

more conservative strategy (releasing less data) as the privacy

values more to the users. An interesting observation is that

a stays larger than the satisfaction threshold (set to 0.7 by

default) when the context sensitivity falls between 0.25 and

0.87. The reason is that below the satisfaction threshold the

user enjoys only very limited service quality. Therefore, it

is very important to identify the satisfaction threshold when

designing the privacy preserving schemes.
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3) Comparison of Different Strategies Under Offline At-

tacks: Fig. 8-10 compare the performance of different strate-

gies under offline attacks. The results show that the proposed

strategy achieves the same performance as the myopic strategy,

which conforms to Theorem 3, that is the optimal policies are

obtained when each stage payoff is maximized.

Fig. 8 shows that both the proposed and myopic strategies

achieve much higher sum of discounted payoffs than the

fixed strategy in the cases of adversaries with different power

limitations, which demonstrates the benefits of considering

the adversary’s actions. In addition, the performance of all

strategies against the adversary with unlimited power is worse

compared with the adversaries with limited power. This is

because the adversary with unlimited power gains more in-

formation, which forces the user takes more conservative

strategies to minimize privacy leakage.

Fig. 9 reports the sum of discounted payoff under different

percentage of sensitive context. The results show that the

sum of discounted payoff diminishes when the percentage

of sensitive context grows larger, as more sensitive users

have to release coarser data to protect their privacy. Fig. 10

depicts the performance of all strategies in applications with

different satisfaction thresholds. The results show that when

the satisfaction threshold grows, the performance of the fixed

strategy drops significantly while the proposed and myopic

strategies drop much slower, which shows that the proposed

and myopic strategies perform well in applications of different

satisfaction thresholds.

VI. RELATED WORK

Privacy preservation techniques. Numerous techniques

have been proposed for preserving privacy in LBSs and

participatory sensing on mobile phone. Spatial cloaking and

anonymization are widely adopted [7], [8], [21], [22], where

a value provided by a user is indistinguishable from those

of k − 1 other users to provide privacy guarantee, known

as k-anonymity. Gedik et al. [7] devise a framework which

provides k-anonymity with different context-sensitive person-

alized privacy requirements. Several clique-cloak algorithms

are proposed in [7] to implement the framework by construct-

ing a constraint graph. In [8], locality-sensitive hashing is

utilized to partition user locations into groups that contain

at least k users. A form of generalization based on the

division of a geographic area is adopted by Anonysense [21],

where a map of wireless LAN access points is partitioned.

KIPDA [22] enables k-anonymity for data aggregation with

a maximum or minimum aggregation function in wireless

sensor networks. However, these privacy techniques focus on

the single shot scenario, which do not protect user’s privacy

against adversaries knowing temporal correlations.

Differential privacy has been considered as a major axis in

data publishing. Publishing different types of data has been

studied, such as histogram [27], [28], set-valued data [29],

decision trees [30], as well as complex data format [31].

Among these studies, the data type related to our work is

histogram. Blum et al. [27] divides the input counts into bins

of roughly the same count to construct a one-dimensional

histogram. By observing that the accuracy of a differential

privacy compliant histogram depends heavily on its structure,

Xu et al. [28] propose two algorithms with different priorities

for information loss and noise scales. Wang. et al. [31] propose

a differential privacy based framework to outsource health

data to hybrid cloud with personalized protection. However,

these techniques focus on data modifications but do not

environmental dynamics and adversaries’ adjustable strategies.

Another category preserves privacy via cryptographic tech-

niques. Girao et al. [32] aggregate data based on homomorphic

encryption, which preserves privacy by performing certain

computations on ciphertext. The limitation of homomorphic

encryption is that a server must know all the users that

have reported data to compute the final aggregated results.

Secure information aggregation frameworks are proposed in

[33]. However, the cryptographic techniques fail to cope with

context privacy since the adversaries can decode the true

sensing data by compromising context-aware applications.

Context privacy. Recent studies have investigated the

context-related privacy leakage on smartphones. MaskIt [12] is

a middleware that employs a privacy check to decide whether

to release or suppress the current user context. As such,

MaskIt limits the adversaries from knowing the user being in

a sensitive context even when the adversaries have knowledge

about the temporal correlation between user’s contexts. Nev-

ertheless, MaskIt does not consider the adversaries’ capability

of adjusting their attacking strategies. CQue CQue focuses on

modeling fine-grained correlations among contexts rather than

providing specific privacy guarantees, which is orthogonal to

our work. Context-related issues have also been discussed in

specific applications. Context information is leveraged in [34]

to generate fingerprints for secure pairing of users’ co-located

devices. Zhu et al. [35] develop a novel context-free attack to

infer the keystrokes on smartphones using the Time Difference

of Arrival (TDoA) of acoustic emanations.

Location Privacy. Our work is closely related to location

privacy in LBSs. Homomorphic encryption is leveraged in

[36] to allow the provider answer encrypted queries without

knowing the location information. Similarly, Li et al. [37]

utilize homomorphic encryption to enable Wi-Fi fingerprint-

based localization without leaking users’ locations. Tao et al.

[38] defend against adversaries that are capable of inferring

a user’s location using localization techniques. These studies

have focused on single-shot location privacy, while the tem-

poral correlations in different contexts are not considered.

Game theoretic analyses on privacy preservation. Several

game theoretic analyses on location privacy have also been

discussed. Freudiger et al. [9] study the problem of selfishness

in location privacy schemes based on pseudonym changes, and

analyze the non-cooperative behavior of mobile nodes with an

n-player complete information game. Shokri et al. [10] for-

mulate the location privacy problem as Stackelberg Bayesian

games with the consideration of user’s service quality and

adversary’s cost. However, these location privacy problems

are quite different from the context privacy discussed in this

paper, where the stochastic dynamics and temporal correlation

of user’s behaviors and environments are considered.
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VII. CONCLUSION

This paper studied the privacy problem of context-aware

applications on smartphones. Considering the distinct features

of context privacy problem including the context dynamics and

adversaries with knowledge of temporal correlations between

contexts and capabilities of adjusting their attacking strategies,

we formulate the interactive competition between users and

adversaries as a competitive MDP, in which the users aim to

maintain the context-based service quality and their context

privacy by deciding the data granularity of each sensor that

are accessed by the context-aware applications. On the other

hand, the adversaries adjust their strategies on which sensing

data are selected as the source to launch attacks. To obtain the

optimal policy of the users efficiently under offline attacks, we

propose a minimax learning algorithm to solve an equivalent

problem with reduced dimensions. The proposed algorithm is

proved to converge to the unique NE point of the stochastic

game. In addition, we discuss the optimal policy under offline

attacks.

We have conducted evaluation on real smartphone traces to

demonstrate the effectiveness of the optimal policy obtained

by the proposed algorithm. The results show the merits of

considering the temporal correlations and future impacts. In

addition, new observations about how user sensitivity and

satisfaction threshold affect user’s utility can provide some

guidelines to the design of privacy preserving mechanisms for

context privacy protection.
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[41] M. Littman and C. Szepesvári, “A generalized reinforcement-learning

model: Convergence and applications,” in Proc. ICML, Jul. 1996, pp.
310–318.



13
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APPENDIX A

PROOF OF LEMMA 1

By taking expectation over c on both sides of (31), we have

Ṽ π∗

(Ar)

= Ec

[

ru(s,a
π∗

) + γ
∑

s′

Pr[s′|s,aπ
∗

]V π∗

(s′)

]

= γ
∑

Ar′,c′

Ec

[

ru(s,a
π∗

) + Pr[Ar′|aπ
∗

] Pr[c′|c]V π∗

u (Ar′, c′)
]

= Ec

[

ru(s,a
π∗

)
]

+ γ
∑

Ar′,c′,c

(

Pr[Ar′|aπ
∗

] Pr[c′|c] Pr[c]V π∗

u (Ar′, c′)
)

= Ec

[

ru(s,a
π∗

)
]

+ γ
∑

Ar′,c′

(

Pr[Ar′|aπ
∗

] Pr[c′]V π∗

u (Ar′, c′)
)

= Ec

[

ru(s,a
π∗

) + γ
∑

Ar′

(

Pr[Ar′|aπ
∗

]Ṽ π∗

(Ar′)
)

]

. (26)

This completes the proof.

APPENDIX B

PROOF OF THEOREM 1

By standard Markov decision process (MDP) techniques

[39], [40], the problem (31) can be expressed as an equivalent

MDP minπa
maxπu

Ec[V
π
u (s)] with the state space S , the ac-

tion space {{au}, {aa}}, the transition kernel Pr[Ar′|aπ
∗

] =
Ec [Pr[s

′|s]], and the stage payoff function Ec

[

ru(s,a
π∗

)
]

. It

is known that the optimal policy pair π∗ can be obtained by

solving

min
πa

max
πu

Ec[V
π(s)] = Ec

[

min
πa

max
πu

{

ru(s,a
π∗

)

+γ
∑

Ar′

(

Pr[Ar′|aπ
∗

]Ṽ π∗

(Ar′)
)

}]

,

(27)

which completes the proof.

APPENDIX C

PROOF OF LEMMA 2

First, we show that both states Ar = 0 and Ar = 1 will

be visited infinite often. Since πt is updated according to the

minimax problem (18), it is obvious that 0 < Pr[Art = 1] <
1 will appear infinite times [41], meaning that both Art =
0 and Art = 1 will appear infinite times. Since αt = 1

t
,

we can see that
∑∞

t=0 α
t+1 = ∞ and

∑∞

t=0

(

αt+1
)2

< 1 +
∑∞

t=1
1

t(t−1) < 1 +
∑∞

t=1

(

1
t−1 −

1
t

)

<∞.

Then, according to conditional average lemma [42], the

process of updating Ṽ t+1(Art+1) by (19) converges to the

component with factor αt+1, which proves the convergence

of Algorithm 1.

APPENDIX D

PROOF OF THEOREM 2

From Lemma 2, Ṽ t+1(Ar) converges to

Ec,Ar′

[

ru(s,a
t
u,a

t
a) + γṼ t(Ar′)

]

=
∑

c,Ar′

Pr[c] Pr[Ar′|aπ
∗

]
(

ru(s,a
t
u,a

t
a) + γṼ t(Ar′)

)

. (28)

Denote ΩtṼ t(Ar) = Ec,Ar′

[

ru(s,a
t
u,a

t
a) + γṼ t(Ar′)

]

, and

∆tṼ t(Ar) = ru(s,a
t
u,a

t
a) + γṼ t(Ar′). It has been proven

that ∆t is a contract mapping of Ṽ t(Ar) [20], i.e., we have
∥

∥

∥
∆tṼ t(Ar)−∆tṼ π∗

(Ar)
∥

∥

∥
≤ γ

∥

∥

∥
Ṽ t(Ar)− Ṽ π∗

(Ar)
∥

∥

∥
.

(29)

Since ΩtṼ t(Ar) =
∑

c,Ar′ Pr[c] Pr[Ar′|atu,a
t
a]∆

tṼ t(Ar)

and Pr[c] Pr[Ar′|atu,a
t
a] ≥ 0, we can see that ΩtṼ t(Ar) is

also a contract mapping of Ṽ t(Ar).
Next, we show that the fixed point of Ωt is Ṽ π∗

(Ar).
According to (28), we have

ΩtṼ π∗

(Ar)

=
∑

c,Ar′

Pr[c] Pr[Ar′|aπ
∗

]
(

ru(s,a
π∗

u ,aπ
∗

a ) + γṼ π∗

(Ar′)
)

= Ec

[

ru(s,a
π∗

u ,aπ
∗

a ) +
∑

Ar′

Pr[c] Pr[Ar′|aπ
∗

]γṼ π∗

(Ar′)

]

= Ṽ π∗

(Ar), (30)

which proves that the fixed point of Ωt is Ṽ π∗

(Ar).
Therefore, the equivalent state value Ṽ t+1(Ar) updated by

Line 7 converges to the NE Ṽ π∗

(Ar) defined by (17), in which

the optimal policy pair π∗ is an NE solution for the context

privacy stochastic game.

Since it has been proven [24] that the equilibrium in a zero-

sum game is the unique minimax equilibrium, and thus the

optimal policy pair π∗ is the unique NE solution for the context

privacy stochastic game.

APPENDIX E

PROOF OF THEOREM 3

According to Section IV-A, the utility can be expressed

in the form of state values {V π(s) : ∀s}, and thus the

optimization problem becomes finding the optimal policy π∗
u

that maximizes {V π(s) : ∀s}.

V π∗

u(s) =max
πu

{

ru(s,a
π
u,a

π
a) + γ

∑

s′

Pr[s′|s,aπu]V
π∗

(s′)

}

,

=max
πu

{ru(s,a
π
u,a

π
a)}+ γ

∑

s′

Pr[s′|s]V π∗

u(s′).

(31)

As the term γ
∑

s′ Pr[s
′|s]V π∗

(s′) is independent of π∗
u,

the optimal policy can be derived by

π∗
u = argmax

πu

{ru(s,a
π
u,a

π
a)} . (32)
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