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Resonance-based Secure Pairing for Wearables
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Abstract—Securely pairing wearables with another device is the key to many promising applications. This paper presents Touch-And-

Guard (TAG), a system that uses hand touch as an intuitive manner to establish a secure connection between a wristband wearable

and the touched device. It generates secret bits from hand resonant properties, which are obtained using accelerometers and vibration

motors. The extracted secret bits are used by both sides to authenticate each other and then communicate confidentially. The ubiquity

of accelerometers and motors presents an immediate market for our system. We demonstrate the feasibility of our system using an

experimental prototype and conduct experiments involving 12 participants with 1440 trials. The results indicate that we can generate

secret bits at a rate of 7.15 bit/s, which is 44% faster than conventional text input PIN authentication.

Index Terms—Secure pairing, modal analysis, resonance, wearable

✦

1 INTRODUCTION

Interacting with devices in proximity is becoming an intrinsic

feature of today’s wearables. This need stems from many

innovative applications that provide unobtrusive experience to

users. Examples are wireless data transfer [2] that upload-

s health and fitness data sampled by wearables to nearby

smartphones or tablets; and 2nd-factor authentication that

authenticate the user by proving the proximity of a smart

device and a wearable owned by the user.

These interactions normally involve sensitive information,

which fuels the need for wearables to secure communication

channels from malicious eavesdroppers. The de-facto approach

to setting up a secure link between two devices is based on

reciprocal information that is secretly shared by both sides.

Due to the broadcasting nature of wireless communications

such as NFC and Bluetooth, the pairing process is vulner-

able to a malicious external device [2]–[4]. Conventional

cryptographic mechanisms need a trusted authority for key

management that is not always available for wearables, as

they are normally conntected in a peer-to-peer fashion. In

Bluetooth, the user can manually enter a PIN code to establish

a secured channel between two legitimate devices. However,

there is no convenience input interfaces for today’s wearables.

For example, wristbands do not have a touch screen to enter

PIN codes.

In this paper, we show that hand touch can be used as an

auxiliary channel to securely pair wristband wearables and

touched devices in an intuitive manner. Our design provide

a new way to generate secret bits without transmission. The

hand touch-based design has the merits in that the signal

propagation is confined with the hand and thus is suitable for

secure pairing. We design Touch-And-Guard (TAG), a system

that generates shared secret bits from hand touch using vibra-
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tion motors and accelerometers, which are equipped in almost

all smartphones, smartwatches, and wristband fitness trackers.

Our observation is that the hand (including the wristband wear-

able) and the touched device form a vibration system whose

resonant properties can be measured by the accelerometers in

both devices. In contrast, proximate eavesdroppers can barely

learn the resonant properties without physically touching the

hand-device system. The resonant properties of the system is

highly sensitive to different hands, devices, and how the hand

touches the device. Consequently, the rich context of touch

postures, positions and hand differences among users [5] leads

to different resonant properties, thereby providing enough

randomness to generate secret bits.

The design of TAG is inspired by modal analysis [6]

in mechanical engineering. Modal analysis determines the

structural vibration properties of an object by exciting it with

forces of different frequencies. In our system, the secure

pairing process is initiated when a user touches a device. An

actuator, e.g., a haptic vibration motor, in the touched device

or the wristband wearable vibrates in a wide frequency range.

Then, the vibration responses of the hand and the device are

captured by accelerometers in the wearable and the device,

respectively. Each side encodes the captured vibration response

to generate a bit sequence, which is used as the shared secret

for secure pairing. A challenge in realizing our system is that

the vibration responses at the wrist and the device are not

identical as they have different physical characteristics. To

extract common information from the vibration responses, we

model our system as a vibration system and analyze resonant

properties shared by both sides. Then, we carefully design

an encoding scheme to extract secret bits from the shared

resonant properties.

To validate our system, we conduct a series of exper-

iments with 12 study participants and 1440 trials. In our

experiments, each participant wears a wristband equipped

with an accelerometer and touches an object attached with

an accelerometer and a vibration motor. We test our system

with various touch gestures, locations of the wristband, and

objects of different materials. The results show that we can

generate 12.52 secret bits on average in 1.75 seconds for each
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touch trial. The amount of secret information generated per

touch is comparable to a 4-digit Bluetooth PIN code (13.2

bits). The bit rate is 7.15 bit/s, which is 44% faster than the

conventional PIN input [7]. The average bit mismatch rate is

merely 0.216%, and the successful rate of pairing is 97.7%,

which demonstrates the robustness of our system. Through

empirical study, we demonstrate that our system is resistant to

microphone and accelerometer-based eavesdroppers at various

distances.

The main contributions of this work are summarized as

follows.

• We develop TAG, a new and intuitive way to securely

pair wristband wearables with nearby devices. To the best

of our knowledge, we are the first to leverage resonant

properties for secure pairing.

• We propose an algorithm to extract reciprocal information

from hand resonance using a haptic vibration motor and

accelerometers. The reciprocal information can be used

as secret keys shared by the devices in physical contact

with the hand.

• We test our system on 12 participants with 1440 trials in

total, and conduct extensive experiments under various

conditions. The results show that we can generate secret

bits at a speed of 7.15 bit/s and achieve 97.7% success

rate in establishing a secure channel. Additionally, we

empirically demonstrate that acoustic and accelerometer-

based eavesdroppers (implemented using a smartphone)

in proximity can learn little information about the gener-

ated bits.

The reminder of this paper is structured as follows. We

begin in Section 2 with analytical and empirical studies about

hand resonance. Section 3 presents the system design of TAG.

System implementation and experimental design are described

in Section 4, followed by performance evaluation in Section 5.

Section 6 discusses several practical considerations of Carpool.

Section 7 reviews related work. Finally, Section 8 concludes

the paper.

2 CHARACTERIZING HAND RESONANCE

In this section, we model our system using modal analysis, and

analyze the properties of hand resonance. Then, we conduct

an experiment to empirically validate the feasibility of hand

resonance based secure pairing.

2.1 Modal Analysis

A mechanical system’s resonant properties are determined

by its physical characteristics, including its mass, stiffness

and damping. A principal method to analyze the mechanical

properties of a system is to break it down into a set of

connected elements.

In most cases, a mechanical system is modeled as a com-

plex multi-degree-of-freedom (MDoF) system, whose physical

characteristics are represented as matrices. A complex MDoF

system can be represented as the linear superposition of a

number of single degree-of-freedom (SDoF) characteristics.

For simplicity, we illustrate the mechanical properties using

k

m

(a) A system of a single

element.

k1

m1 m2

f1(t)

f2(t)

x1(t) x2(t)

(b) A system of two elements in physical contact.

Fig. 1. A simplified model of the TAG system. A device or

hand can be modeled as a single element. A hand and a

touched device can be modeled as two coupled elements.

an SDoF model. As presented by Fig. 1(a), an element can

be characterized by an infinitely rigid constant mass m with

elasticity represented by an ideal massless spring of constant

stiffness k.

In the TAG system, the hand and the device can be modeled

as two elements. When the hand touches the device, the system

can be modeled as two elements with interactions, as depicted

in Fig. 1(b). Generally, external forces applied to the system

can be modeled as a force vector f =
[

f1
f2

]

, where f1(t), f2(t)
are external forces applied to the two elements, respectively.

It is worth noting that fi(t) = 0 when there is no external

forces applied to the corresponding element. The dynamic

response of the system under external forces is governed by

the following equation.

Mẍ+Kx = f , (1)

where x =
[

x1

x2

]

is the displacement vector, and the ẍ is

the second-order derivative of x. M =
[

m1 0
0 m2

]

is the mass

matrix, K =
[

k1+k1 −k2

−k2 k2

]

the stiffness matrix.

The displacements can be written in the form of Fourier

transforms:

xn(t) =
∑

ω

Xn(ω)e
iωt, n = 1, 2, (2)

where Xn(ω) is the Fourier coefficient of xn(t). In our system,

the vibration motor with frequency ω0 can be expressed in the

form of a δ function as follows.

fn(t) = Fn

∑

ω

eiωtδ(ω − ωn), n = 1, 2, (3)

where the δ function is defined by

δ(ω − ωn) =

{

1, ωn = ω

0, ωn 6= ω.
(4)

Taking (2) and (3) into (1), we yield

(K− ω2
M)

[∑
ω
X1(ω)

∑
ω
X2(ω)

]

=
[

F1

∑
ω
δ(ω−ω1)

F2

∑
ω
δ(ω−ω2)

]

. (5)

Based on (5), we can derive the frequency response function

(FRF) of each element in the system, which describes magni-

fication factors under the forces of different frequencies. The

magnification factor is defined to be the ratio of the steady-

state displacement response amplitude to the static displace-

ment. As the closed-form expression is quite complex, we

illustrate the resonance properties using a concrete example.

We set k1 = 6, k2 = 3,m1 = 2,m2 = 1, f1(t) = 0, and f2(t)
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Fig. 2. An illustration of resonance properties in a system

of two coupled elements. We set k1 = 6, k2 = 3,m1 =
2,m2 = 1, f1(t) = 0.

can be any single frequency force. In this case, there is only

one external force, e.g., the force generated by a vibration

motor, applied to m2, while there is no external force applied

to m1. It is worth noting that m1 is also affected by the

external force due to the stiffness between m1 and m2. The

FRF is depicted in Fig. 2.

The FRF plot provides the following observations.

• First, the resonance properties of the two elements are

consistent. Specifically, the resonant frequencies of the

two elements are completely aligned with each other,

and the antiresonant frequency of one element is roughly

aligned with the local minimum frequency of the other

element.

• Second, there are as many resonant frequencies as the

number of DoFs in the system. Note that although we

only model one object as a SDoF with one element, the

actual object is a MDoF system consisting of multiple

elements. In practice, there are many resonant frequencies

in the hand-device system.

These observations imply that the resonance properties can be

used as reciprocal information to generate enough secret bits

for secure pairing.

2.2 Feasibility Study

To validate the above observations, we designed a prototype as

shown in Fig. 3. The prototype consists of a wristband with a

triple-axis accelerometer, a cubic with a haptic vibration motor

and a triple-axis accelerometer. We use the InvenSense MPU-

6050 sensors as the accelerometers, which are equipped in

many commercial wearables and smartphones. The sampling

rate of accelerometers is 250 Hz. We use an Eccentric Rotating

Mass (ERM) motor, which is widely adopted in today’s

smartphones. We use an Arduino development board [8] to

control the motor to to sweep from 20 Hz to 125 Hz.

We ask participants to touch the cubic with the hand wearing

the wristband as depicted in Fig. 3(b), and in the meantime

the vibration motor generates sweep excitation signals. The

accelerometer data at both sensors are recorded and com-

pared. Fig. 4 illustrates the fast Fourier transform (FFT) of

accelerometer amplitudes in two touch trials. For both touch

trials, we observe that the resonant frequencies of the cubic

and the wrist are well aligned. Additionally, we observe that

the resonant frequencies in the two touch trials are different.

Note that these two touch trials are performed by the same

person, while the touch postures, strengths, and touch positions

(a) The TAG Prototype.

motor

wristbandacc

cubic

(b) Touch test.

Fig. 3. Prototype setup.
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Fig. 4. FFT of accelerometer data collected at the wrist-

band and the cubic.

are slightly different. It indicates that resonant frequencies are

quite sensitive to how a user touches an object, thereby making

resonance a unique signature to each touch trial.

3 SYSTEM DESIGN

In this section, we first introduce the overall architecture of

TAG. To extract resonant properties, we carefully design the

vibration excitation using a commercial vibration motor. To

convert resonant properties into reciprocal bit sequences, we

preprocess accelerometer data to remove noise and encode

resonant frequencies. Reconciliation and privacy amplification

are employed to reduce the bit mismatch rate without compro-

mising security. We also analyze the security of TAG under

different attacks.

3.1 Overview

Fig. 5 gives an overview of TAG, which extracts reciprocal

secrets from hand resonance for secure pairing. TAG con-

siders a scenario where a user intends to establish a secure

communication channel between its wearable and another

device. The user triggers this pairing intent by touching the

device. Then, the touched device generates vibration signals

via a vibration motor. The vibration signals are designed to

excite the device and the hand. As such, the accelerometers

on the wristband wearable and the device can capture the

vibration responses of the hand and the device, respectively.
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Fig. 5. An overview of the TAG system.

The wearable and the device separately process their own

accelerometer data to extract reciprocal information without

any information exchange. The accelerometer data process

includes three steps: frequency response extraction, resonance

encoding, and reverse channel coding. The frequency response

extraction step screens out noise and disturbance caused by the

environment and hand movements; it then derives the desired

frequency responses for resonance analysis. After obtaining

the frequency responses, resonance and antiresonant frequen-

cies are identified and encoded in the resonance encoding step.

The reverse channel coding aims to reduce the discrepancies

between the encoded bits by the wearable and the device. In

particular, the original encoded bit sequences are considered as

messages with a limited number of errors, and are converted

into shorter sequences using a error correction code (FEC)

decoder. The output of the reverse channel coding is the

reciprocal information shared by the wearable and the device.

It is worthwhile noting that in a complete secret sharing

protocol, information reconciliation and privacy amplification

are performed to extract more reliable secrets. The reciprocal

information is used to establish a secure channel. After suc-

cessful pairing, the wearable notifies the user by a specific

haptic feedback.

3.2 Vibration Excitation

TAG is inspired by modal analysis in that resonance properties

can be derived by exciting the target object with forces of

different frequencies. To this end, TAG utilizes an ERM vibra-

tion motor as the excitation source. ERM vibration motors are

widely equipped in today’s mobile devices to provide haptic

feedback and vibration notifications. The motors are supplied

with DC power and rotate an eccentric mass around an axis

to create a centripetal force, which causes the motors and the

attached devices to vibrate. The centripetal force is the external

force applied to the hand-device system, and can be expressed

as

f(t) = mdω2 sin(ωt), (6)

where m is the eccentric mass, d the distance from the center

of gravity to the center of rotation, and ω the angular velocity

of the rotation. The motors tune the input voltage to control

the angular velocity ω, which determines the amplitude and

the frequency of the force. In practice, the analog sinusoidal

waveform is approximately generated with binary voltage

levels using Pulse Width Modulation (PMW). In particular,

PMW modulates the duty cycles of the DC power to simulate
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Fig. 6. An illustration of vibration excitation.

a voltage between the DC power voltage and zero voltage. In

our system, we generate the vibration excitation by controlling

the duty cycles of the DC power. Specifically, we gradually

increase the duty cycles to generate forces with sweeping

frequencies. Fig. 6 gives a visual illustration of the our

vibration excitation. The vibration excitation is measured using

an accelerometer. The unit of y-axis is g/216, where g stands

for the gravitational acceleration.

The frequency range needs to be selected carefully to obtain

resonance properties. Previous studies [9], [10] have reported

that the natural frequencies of the human hand-arm systems

range from several Hertz to hundreds of Hertz. Therefore, a

subset of the resonant frequencies of the hand-device system

fall within this range. Apparently, the wider frequency range

we select, the more complete resonance properties we can

obtain. However, the maximal frequency that can be captured

by an accelerometer is gated by its sampling rate. According

to the Nyquist sampling theory, a sensor at f sampling

rate can capture signals at frequencies no more than f/2.

As most of the accelerometers equipped in today’s mobile

devices support up to 400 Hz sampling rates, the maximal

frequency is gated by 200 Hz. In addition, there is a tradeoff

between the frequency range and the vibration duration. For

a given frequency sweeping speed, the vibration duration is

proportional to the frequency range. In our implementation,

we select 20-125 Hz as the frequency range, which manages

to generate secret bits comparable to a 4-digit PIN code.

The speed of frequency sweeping determines the duration

of one touch trial. We aim to set the sweeping speed as fast

as possible to minimize the touch duration. The limit of the

sweep speed is gated by the transient state duration. When an

external force changes its frequency, the forced system needs a
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short period of time before reaching the steady state. Note that

we can only accurately obtain the resonance properties when

the system is in the steady state. However, it is hard to identify

which part of the accelerometer data is collected in the steady

state, as the duration and patterns of the transient state depend

on many confounding factors. For each vibration frequency,

the collected accelerometer data contains two parts: the data in

the transient state and the data in the steady state. To amortize

the impact of the transient state, the vibration motor is set to

stay for enough time before increasing its frequency. As such,

the amount of data in the steady state is dominant and the

overall data retains strong resonant properties. We empirically

evaluate the system under various durations and set the motor

to sweep from 20 Hz to 125 Hz within 1.75 s, which eliminates

the impact of the transient state.

3.3 Frequency Response Extraction

To extract resonant properties, we first need to derive the

frequency response of the hand-device system from the raw

accelerometer data. We observe that the accelerometer data

at low frequencies is largely polluted by motion artifacts. In

practice, it is inevitable that the hand moves during the pairing

process. The acceleration caused by motion is usually much

larger than vibration-induced acceleration, thereby making it

hard to extract vibration-induced acceleration. Fortunately, the

frequencies of motion artifacts concentrate at low frequencies

of several Hertz [11], [12]. Hence, we set the minimal vi-

bration frequency to over 20 Hz to avoid overlapping with

hand motion frequencies. As such, we only extract resonant

properties in the vibration frequency range where motion

artifacts are negligible.

Recall that although the resonant frequencies of different

elements match each other, their responses at other frequencies

are not identical, as illustrated in Fig. 2. These mismatches

in real systems are much more complex, and lead to local

variances which might mislead the resonant frequency identifi-

cation. Fig. 7(a) illustrates the frequency response collected in

one touch trial. We observe that there are multiple peaks near

one resonant frequency. Thus, these local variances should

be mitigated before performing resonance encoding. To this

end, we use a moving-average filter to eliminate these local

variances. The results after filtering is shown in Fig. 7(b),

where the smoothing window is set to be 10 samples.

3.4 Resonance Encoding

Resonance encoding translates the frequency response into a

sequence of bits. After local variance removal, we obtain two

highly similar curves in the frequency domain. To encode fre-

quency responses, we have the following alternative options:

1) encoding the amplitudes of the frequency response by quan-

tizing the amplitude of each frequency or frequency segment

into multiple levels; 2) encoding the shape of the frequency

response curve by classifying the curve of each frequency

segment into several predefined shapes, such as ascending and

descending shapes; and 3) encoding the positions of resonant

and antiresonant frequencies. Although the first and second
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Fig. 7. Local variance removal.

options can preserve most of the information, they are inap-

plicable in our case. As we observe in Fig. 4, the amplitudes

of the two frequency responses are not coincidental. Thus,

amplitude quantization would introduce many mismatches,

which would lead to a high failure rate in pairing. The shape-

based encoding faces a similar issue, as the two curves do not

coincide in non-resonant frequency ranges. Therefore, we turn

to the third option that encodes the resonant and antiresonant

frequencies to ensure the matching rate.

Our encoding algorithm consists of two steps: resonant

and antiresonant frequencies identification and modulation. We

use local maxima and minima in the frequency response to

identify the resonant and antiresonant frequencies. We employ

a sliding window to move across the whole frequency range,

and find all the extrema (i.e., maxima or minima) in each

sliding window. Note that there may be multiple extrema near

one resonant or antiresonant frequency due to local variances.

We observe that resonant frequencies are separate from each

other by at least 10 Hz. To avoid repetitive extrema, we select

at most one maximum and minimum in each sliding window

of 10 Hz. In particular, if there are multiple minima or maxima

in one sliding window, we select a winner based on amplitude

and discard the others. After scanning the whole frequency

response, the frequencies of all extrema are marked as resonant

or antiresonant frequencies.

Then, we modulate these frequency locations into a se-



6

Frequency (Hz)
20 125

ac
c 

(g
/2

1
6
)

0

100

200

300

400

R
1 A

3
A

2
R

2
R

3
A

1 R
4

C=R
!
 R

0
 R

2
 R

0
 R

3
 R

4
 A

0
 A

1
 A

0

A
2
 A

3
 A

0

Fig. 8. An illustration of resonance encoding. The relative

location of each resonant or antiresonant frequency in

its segment is encoded. The encoded bit sequence C
consists of encoded locations of resonant frequencies

{Ri} and antiresonant frequencies {Aj}. Segments with-

out resonance or antiresonance are encoded as R0 or A0.

quence of bits. An intuitive method is to quantify frequencies

and encode these frequency levels. However, this encoding

method leaks certain information as it has predictable patterns.

The order of resonant frequencies (e.g., in an ascending or

descending order) must be preset so that the two sides can

derive the same sequence of bits, which leaks information

in the encoded bit sequence. For example, if the resonant

frequencies are encoded in an ascending order in the bit

sequence, eavesdroppers know that the first codeword in the bit

sequence is likely to be small as it corresponds to the minimal

resonant frequency. To avoid such information leakage, we

encode the relative locations rather than the absolute locations

of resonant frequencies. First, we divide the whole frequency

range into N segments. Then, we encode the relative locations

of resonant and antiresonant frequencies in the corresponding

segment that covers the frequencies, as illustrated in Fig. 8.

To encode relative locations in a segment, we evenly divide

a segment into m subsegments, and quantify the frequen-

cy locations based on these subsegments. Segments without

resonant or antiresonant frequencies are encoded as R0 or

A0. In our implementation, we use two bits to encode the

relative locations in a segment. We divide each segment into

three subsegments and use “01”, “11”, and “10” to encode

frequencies in these subsegments. We set R0 and A0 to be

“00” to encode segments without resonant or antiresonant

frequencies. If there are multiple resonant (or antiresonant)

frequencies in one segment, we select the frequency with

higher (or lower) amplitude for encoding. Empirical results

show that there are 4-8 resonant (or antiresonant) frequencies

in 20-125 Hz. Hence, we divide the frequency range into 6

segments.

3.5 Synchronization

Traditional key generation schemes require synchronization of

two devices to ensure that the bits obtained by one device

corresponds to the same time instants as the bits of the other.

Synchronization is fairly simple in TAG as the secret bits

are obtained from the frequency domain instead of the time

domain. Even if the two devices obtain the accelerometer data

in different time window, the resonance features extracted by

the two devices can still match. Therefore, the synchronization

scheme in our design is only to ensure that the data captured

by the two devices are within the vibration duration. We can

achieve such a coarse synchronization using the pairing request

packet. In particular, when a device intents to connect with

the other device, it sends a pairing request to the other and

triggers the motor. At the meantime, both devices records

the accelerometer data to extract bits from the frequency

responses.

3.6 Reconciliation

After resonant encoding, the wearable and the device derive

n-bit sequences, denoted as Cw and Cd, respectively. Due

to noise and mismatched local variances, Cw and Cd may

differ at certain bits with a bit mismatch rate ǫ. Reconciliation

is required to alleviate the discrepancies of the secret bits

between the two legitimate devices. As both bit sequences are

derived from the resonance of the same system, they can be

viewed as two different distorted versions of the same signal.

Thus, by employing an error-correcting code (ECC) [13], we

can drastically reduce bit mismatch rate at the cost of bit rate.

In particular, we treat the n-bit sequences Cw and Cd

as two distorted versions of an n-bit codeword Co in an

(n, k) ECC C, which encodes a k-bit message into an n-

bit code using an encoding function f(·). It is worth noting

that the reconciliation reversely use the concept of RCC, that

is, the n-bit sequences Cw and Cd are the original messages

but are treated as codewords with errors. The wearable first

derives the codeword Co by Co = f(f−1(Cw)), where f−1(·)
denotes the decoding function of C. Then the wearable sends

the difference δ = Co ⊕ Cw, where ⊕ denotes the bitwise

logic operation XOR, to the touched device in cleartext via

data communication channel such as Wi-Fi or Bluetooth. The

touched device deduces Cw by

Cw = δ ⊕ f(f−1(δ ⊕ Cd)). (7)

The ECC C should provide enough error correction ability to

ensure Cw = Cw with high probability. The rationale behind

this is that, the decoding function f−1(·) maps any n-bit

sequence Ci to a k-bit message M whose corresponding en-

coding result f(M) is the codeword closest to Ci. According

to the definition of δ, δ ⊕ Cw equals to Co, and thus the bit

mismatch rate between δ⊕Cd and Co equals to the ǫ, i.e., the

bit mismatch rate between Cw and Cd. Given an ECC C with

an enough error correction ability to tolerate ǫ bit mismatch

rate, f(f−1(δ⊕Cd)) equals to Co with high probability, which

in turn makes Cw = Cw with high probability.

3.7 Privacy Amplification

As the ECC C is assumed to be public and the difference δ
is transmitted via an insecure communication channel, which

may leak partial information about Cw to eavesdroppers.

Although eavesdroppers cannot directly infer Cw by observing

δ, they can narrow down the search space based on the

knowledge that δ ⊕ Cw corresponds a certain codeword in C.

In particular, the above reconciliation process leaks n−k bits

of information about the n-bit sequence Cw. To avoid such

partial information leakage, we take a privacy amplification

step by removing n − k bits out of the Cw. Specifically, we
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use f−1(Cw) as the secret bit sequence, which is completely

secure to eavesdroppers.

3.8 Security Analysis

We analyze the security performance of TAG under different

attack scenarios. Both passive and active attacks are discussed

below.

3.8.1 Eavesdropping

Eavesdroppers are assumed to be able to overhear all com-

munications between wearable and touched devices. In TAG,

the only communication during pairing is sending δ from the

wearable to the device via their data communication channel,

such as Wi-Fi or Bluetooth. Recall that the partial information

leakage by transmitting δ can be completely avoided by

reducing the size of the secret bit sequence in the privacy

amplification step. Therefore, eavesdroppers can learn nothing

about the secret bits by overhearing the data communication

channel.

As vibration signals emitted by the motor propagate in solid-

s, e.g., the desk in contact with the touched object, and over

the air, eavesdroppers may also try to obtain information about

the secret bits by overhearing these physical channels using

accelerometers or microphones. To validate TAG against such

eavesdroppers, we evaluate the information leakage through

physical channels through a set of experiments in Section 5.

3.8.2 Denial-of-Service (DoS)

DoS attackers aim to make the pairing fail by preventing the

communications between the wearable and the touched device.

In particular, DoS attackers can stress the data communication

channel to avoid the successful reception of δ during the

reconciliation step. To protect TAG against such DoS attacks,

we set a maximum number of attempts and a timeout to

transmit δ. Once the number of transmission attempts or the

time reaches the limit, TAG uses Cw and Cd as the secrets

without reconciliation. The pairing performance of TAG with-

out reconciliation is evaluated in Section 5 to demonstrate the

effectiveness under DoS attacks.

3.8.3 Man-in-the-Middle (MITM)

MITM attackers intercept the packets transmitted by the wear-

able and the touched device, and deliver false messages to

the receiver. In TAG, since the data communication channel

between the wearable and the touched device is an unau-

thenticated channel during pairing, an MITM attacker can

impersonate as the sender during the reconciliation step. As

such, an MITM attacker spoofs a legitimate device and alter

δ to disrupt the pairing process without revealing its presence.

As attackers have no knowledge about Cw or Cd, we can

extract a “fingerprint” from Cw or Cd to verify the integrity of

δ. The fingerprint can be a fraction of Cw or Cd, or a shorter

message derived from Cw or Cd. We employ the message

authentication code (MAC) scheme in [14] to generate the

fingerprint.

3.8.4 Relay Attack

Relay attackers initiate the pairing process and relay messages

between the wearable and the touched device without manipu-

lating them. In TAG, the secrets are never transmitted over the

air and are only accessible to devices in contact with the hand.

Thus, even relay attackers can successful relay all messages

during the pairing process, they cannot obtain the secrets used

for packet encryption.

4 EXPERIMENT DESIGN

This section presents our experimental setup, the basic infor-

mation about enrolled participants, and the detailed procedure

of performing experiments.

4.1 Experimental Setup

To validate the TAG system, we conducted experiments using

an experimental prototype as depicted in Fig. 3. The pro-

totype uses an Arduino OCROBOT Mango II development

board to control an ERM vibration motor, and an Arduino

UNO development board to collect acceleration data from

two InvenSense MPU-6050 sensors. The vibration motor and

one accelerometer is attached to an object, while the other

accelerometer is worn on the wrist of the participant using a

wristband. To simulate the scenario of mobile payment, we

use a cubic box as the mobile payment end. The cubic size is

6.3 in (length) × 3.8 in (width) × 1.9 in (height), as shown in

Fig. 3(b). In addition, we also attach sensors to a smartphone,

a mouse, and a cup as the touched objects.

The maximal input voltage of the ERM motor is 3.3 V.

We developed an application to control the input voltage

of the motor using PWM. The vibration amplitudes and

frequencies of the motor under different voltages are measured

and shown in Fig. 9. The sampling rate of the accelerometer

sensors is set to be 250 Hz to capture all vibration responses.

The acceleration data is collected via an Arduino board and

processed offline using MATLAB R2014b.

We use an iPhone 5s as an acoustic eavesdropper that

records vibration-induced sound through its built-in micro-

phone. The iPhone 5s is placed in the proximity of 1-36 inches

away from the motor. We use the built-in microphone to record

acoustic signals during our experiments with a sampling rate

of 44.1 kHz. The recorded data during each touch trial is

uploaded to a PC, and is processed using the same algorithm to

infer the bit sequence derived from the acceleration data. We

use an InvenSense MPU-6050 sensor to eavesdrop vibration

signal leakage along the desk. The accelerometer is placed

in the proximity of 1-11 inches away from the motor. The

experiment environment is in a quiet office so that vibration-

induced acoustic signals are not overwhelmed by background

noise. The sound pressure level (SPL) of the office during our

experiments is around 40-50 dB.

4.2 Enrolled Participants

We invite 12 volunteers, whose basic information is listed in

Table 1. The participants include 5 females and 7 males, with

ages ranging from 23 to 31. We specifically select subjects
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Fig. 9. Specifications of our ERM motor.

TABLE 1

Basic information of volunteer subjects. The subjects are

ordered based on their wrist circumferences.

Subject Gender Age Wrist circumference BMI

1 F 28 5.51 in 20.8
2 F 24 5.55 in 17.5
3 F 28 5.67 in 18.1
4 F 24 5.82 in 22.0
5 F 23 6.02 in 21.8
6 M 25 6.29 in 22.3
7 M 28 6.38 in 24.69
8 M 29 6.50 in 22.83
9 M 27 6.73 in 21.80
10 M 23 6.89 in 24.90
11 M 27 6.97 in 27.70
12 M 31 7.48 in 27.13

to cover a wide range of wrist circumferences and body

mass indices (BMI). Wrist circumference and BMI are import

physical attributes related to hand vibrations, as our system

should be robust for users of different physical attributes. In

particular, the wrist circumferences range from 5.51 inches to

7.48 inches, and BMI ranges from 17.5 to 27.70.

4.3 Procedure

Prior to touch trials. The touched object was placed on a

desk in our office. An iPhone 5s was placed on the same desk

at a distance of 6 inches away from the object to eavesdrop

on the acoustic signals leaked from the vibration. Note that

we varied the distances in our security validation experiment.

In addition, we place an accelerometer on the desk near the

touched object to act as an accelerometer-based eavesdropper.

Prior to starting touch trials, we demonstrated the performance

of different touch postures. We performed four touch postures,

including palm touch, fist touch, border touch, and corner

touch, to touch different areas of the object, as illustrated in

Fig. 10.

Performing touch trials. Each participant were asked to wear

a wristband equipped with an accelerometer on its preferred

hand, and use that hand to touch the object. Seven participants

chose to wear the wristband on their left hands while five

others chose to wear it on their right hands. The wearing

locations of the wristband were based on the participants’

own habits of wearing watches or wrist wearables. Then,

each participants was asked to perform four different touch

(a) Palm touch. (b) Fist touch. (c) Border touch. (d) Corner touch.

Fig. 10. Touch postures.

postures as we demonstrated in Fig. 10. We only showed

different contact areas of these touch postures without specific

requirements for touch strength, or detailed hand/arm gestures.

The participants were asked to repeat each touch posture 30

times. One touch trial lasted 1.75s, during which the motor

vibrated with sweeping frequencies from 20 Hz to 125 Hz,

while the iPhone 5s used its built-in microphone to records

acoustic signals. The participants were allowed a small rest

period of around 5 s between trials of a posture, and a longer

break of 10-30 s between different postures. We yielded a

dataset with 1440 trials, where each participant contributed

120 trials. We collected additional trials from 4 participants in

controlled settings to study the impact of vibration durations

and wearing locations. Each participant performed 30 trials in

each vibration duration and wearing location setting.

5 EVALUATION

In this section, we evaluate the performance of TAG. Eval-

uation metrics are explained, and the pairing and security

performance is presented. We also validate our system using

different objects as the touched device.

5.1 Evaluation Metrics

We employ the following metrics to evaluate the performance

of our system.

• Bit rate. We use bit rate to measure how fast we can

generate reciprocal information from resonant properties.

Given the number of secret bits (13.29 bits for a 4-digit

PIN code) required for pairing, a higher bit rate indicates

a shorter time needed for pairing. In our system, bit

rate depends on the vibration duration and the encoding

scheme. Recall that the vibration duration is gated by

the period of the transient state. The vibration duration

should be long enough so that the effect of the transient

state does not overwhelm the resonant properties in the

steady state.

• Bit mismatch rate. Bit mismatch rate is defined as the

ratio of mismatched bits to the total number of gener-

ated bits. A lower bit mismatch rate indicates a higher

probability that the wearable and the device generate the

exact same sequence of bits. The bit mismatch rate is

also affected by the vibration duration and the encoding

scheme. There is a tradeoff between bit mismatch rate

and bit rate. Longer vibration duration yields stronger

resonant properties, thereby achieving lower bit mismatch
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rate at the cost of lower bit rate. We need to identify

the optimal vibration duration that delivers the highest

bit rate while maintaining strong resonant properties for

encoding.

• Entropy. Entropy measures the average amount of in-

formation contained in a message [15]. The entropy

of a random variable X is computed by H(X) =
−
∑n

i=1 Pr[xi] log2 Pr[xi], where Pr[xi] is the proba-

bility of X’s possible value xi. In our evaluation, we

compute entropy per segment to measure the uncertainty

of the generated secret bits. The probability of each bit is

computed by counting its frequency in repeated trials. The

secret bits with higher entropy contain more information,

and are harder for eavesdroppers to infer.

• Mutual information. Mutual information is a measure of

the amount of information about one random variable

obtained through another random variable [15]. We use

mutual information to measure the information leakage in

our system. Less mutual information between two random

variables X and Y indicates that one can learn less about

X by observing Y . Mutual information close to zero

between the bit sequences obtained by the eavesdropper

and those of the wearable or the device indicates that the

eavesdropper is unable to obtain any useful information

about the bit sequences generated from resonant proper-

ties.

5.2 Pairing Performance

This section studies the pairing performance of our system in

terms of bit mismatch rate and bit rate. First, we conducted a

set of micro-benchmark experiments to evaluate the impact of

different settings. We varied the vibration durations to find an

optimal duration for one touch trial (Fig. 11). In order to test

the robustness of our system, we asked participants to wear the

wristband at different locations (Fig. 12). Then, we followed

the setup as described in Section 4.3 and obtained the overall

performance across all participants (Table 2 and Fig. 13).

A key factor that affects the bit mismatch rates and bit

rates is the vibration duration. We need to identify the op-

timal vibration duration that minimizes the negative impact

of the transient state to achieve desired bit mismatch rate

with the maximal bit rate. To this end, we empirically s-

tudy the performance under various vibration durations as

shown in Fig. 11. The results of encoding schemes with

and without reconciliation are illustrated. The scheme without

reconciliation is adopted under DoS attacks, while the scheme

with reconciliation is adopted under eavesdropping or MITM

attacks. We employ the (12,23) Golay code as the ECC in

the reconciliation step. The results show that the bit mismatch

rates diminish quickly when the vibration duration is larger

than 1.5 s, while the improvement is minimal when we further

extend the duration beyond 1.75 s. The results imply that

the vibration duration of 1.75 s is long enough to extract

reliable bits at a rate of 13.71 bit/s for the scheme without

reconciliation and 7.15 bit/s for the scheme with reconciliation.

The bit rate in our system outperforms that of the conventional

PIN code input, whose bit rate is 4.96 bit/s, according to the
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Fig. 11. Bit mismatch rates and bit rates under various

vibration durations.
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Fig. 12. Bit mismatch rates with different wearing loca-

tions.

experiments in [7]. In the following evaluation, we set the

vibration duration to 1.75 s.

In real scenarios, the wearing locations of wrist wearables

vary among users. In our experiments, the wristband is put on

locations according to participants’ habits of wearing watches

or wearables. Before proceeding to the results under this un-

controlled wearing setting, we conduct a separate experiment

in which we intentionally vary the locations of the wristband

to investigate the robustness of our system. We ask participants

to place the wristband close to their wrist joints (location 1),

and move the wristband 0.5 inch (location 2), 1 inch (location

3), 1.5 inches (location 4), and 2 inches (location 5) away

from their wrist joints. Fig. 12 shows that the bit mismatch

rates of the scheme without reconciliation increase slightly

when the wearing location moves away from the wrist joint,

while those of the scheme with reconciliation stay below 1.7%

across all locations. The reason behind the results is that

the vibration amplitudes of the hand resonance decay when
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TABLE 2

Bit mismatch rates of different touch postures.

Palm Fist Border Corner

w/o reconciliation 1.13% 0.57% 2.1% 3.9%
w/ reconciliation 0 0.04% 0.39% 0.43%

Fig. 13. Bit mismatch rates of all participants.
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propagating along the forearm, thereby making it harder to

accurately identify the resonant and antiresonant frequencies

at the wristband. Fortunately, as the bit mismatch rates are still

lower than 6%, the scheme with reconciliation can still correct

most of these errors. Moreover, the cases where wearables are

worn more than 1 inch away from the wrist joint are quite rare.

We observe that most participants naturally worn the wristband

in the range between location 1 and location 2.

The overall performance with 1.75 s vibration duration

and uncontrolled wearing locations are given in Table 2 and

Fig. 13. The bit mismatch rates of different touch postures

are summarized in Table 2. The palm and fist touch postures

achieve zero bit mismatch rate under the encoding scheme

with reconciliation, while the corner touch posture performs

worst of all. The reason behind the results is that palm and

fist touch postures provide larger touch areas and thus lead to

stronger resonance, while the corner touch posture provides

the smallest touch area. The bit mismatch rates of all touch

postures are consistently low, which indicates the usability of

the touch-based secure pairing.

Fig. 13 shows the bit mismatch rates across all participants,

whose basic information is listed in Table 1. On the whole,

our system achieves bit mismatch rates of 0.216% and 1.932%

for the scheme with and without the reconciliation, respec-

tively. This reveals that our system without reconciliation still

maintains a very low bit mismatch rate of less than 2% under

DoS attacks. For the complete scheme, i.e., the scheme with

the reconciliation, the successful rate of secure pairing for all

trials is 97.7%, which indicates that generated bit sequences

in 97.7% of the trials are completely matched. The average

number of trials needed for successful pairing is 1.023. It is

worth noting that the results are comparable to other secure

pairing techniques [7], [16]–[18]. We also observe that for

subjects with large wrist circumferences (subjects 9-12), the

pairing performance without reconciliation is worse on average

compared to those of subjects with small circumferences. The

reason behind this is that the vibration signals better propagate

on thinner hands and wrists, thereby resulting in higher signal

to noise ratio at the wristband.
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Fig. 15. Entropy of generated bits.

5.3 Security Validation

This section evaluates the security performance of our sys-

tem. To ensure the reciprocal information obtained from the

resonant properties is substantially unpredictable, we first

measure the randomness of generated bits. Then, we study

the information leakage under acoustic eavesdropping attack

and accelerometer-based eavesdropping attack.

5.3.1 Randomness

Fig. 14 measures the normalized numbers of resonant and an-

tiresonant frequencies falling into each segment. The numbers

per segment are counted based on all trials in our experiments.

We observe that the normalized frequencies are comparable

to each other, except for that of the antiresonant frequency in

segment 6. The reason is that we may miss the antiresonant

frequencies when they are near the highest vibration frequency.

Nevertheless, most resonant and antiresonant frequencies are

randomly distributed in different segments with comparable

probabilities. This indicates that we yield reasonable random-

ness through our segment-based encoding scheme.

We further quantify the randomness of the reciprocal in-

formation using entropy. Fig. 15(a) measures the entropy

per segment of the bit sequences directly derived from the

resonant properties without reconciliation. The code index

represents each of the 12 codes that encode the resonant and

antiresonant locations, as illustrated in Fig. 8. We observe

that the entropies of most codes approach two, which is the

theoretical upper-bound. The entropy of code 12 is lower as

we miss some antiresonant frequencies in the last segment due

to the limitation in vibration frequency. Fig. 15(b) shows the

entropy per bit after applying reconciliation. We see that the

entropies of all bits approach the theoretical upper-bound, i.e.,

1, indicating high randomness of the generated bits.
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TABLE 3

NIST Statistical Test Suite Results.

Test P-value

Frequency 0.350485
Block Frequency 0.739918
Cumulative Sums 0.213309
Cumulative Sums 0.534146

Runs 0.350485
Longest Run 0.213329

FFT 0.035174
Approximate Entropy 0.534146

Serial 0.213309
Serial 0.122325
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Fig. 17. Mutual information under different eavesdropping

distances. The attacker uses microphone for eavesdrop-

ping.

In addition, we employ the standard randomness test suite

from NIST [19] to examine the randomness level of secret bits

after the reconciliation. The NIST statistical test suite assumes

a null hypothesis that the input bit sequences are random and

computes the p-values of a set of random test processes. If the

p-value is less than a significant level, which is conventionally

set to be 1%, the null hypothesis is rejected, implying that

the bit sequences are not random. Table 3 summarizes the

results of the NIST tests. The results show that all the p-

values are larger than 1%, which indicates that the generated

bit sequences in TAG pass the NIST tests.

5.3.2 Acoustic Eavesdropping Attack

In order to evaluate the information leakage to acoustic

eavesdroppers, we first compare the raw frequency responses

obtained by the wearable, the device, and the eavesdropper.

The eavesdropper’s measurements are downsampled to match

the acceleration data. Fig. 16 shows pairwise scatterplots of

the measurements collected by the three entities. The intuitive

meaning of the visual results is that the measurements of the

wearable and the device are well aligned with each other, while

the eavesdropper’s measurements are uncorrelated with those

of the wearable or device. The fundamental reason behind the

results is that the subtle vibrations of the hand and object incur

extremely small sound, which is overwhelmed by surrounding

noise and the acoustic signals generated by the motor.

To quantify how much information an eavesdropper can

learn from its measurements, we empirically compute the mu-

tual information between the bits derived by the three entities

using the same encoding scheme. Fig. 17 shows the mutual

information under various eavesdropping distances. Eaves-
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Fig. 18. Mutual information under different touch pos-

tures. The attacker uses microphone for eavesdropping.
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Fig. 19. Mutual information under different eavesdropping

distances. The attacker uses accelerometer for eaves-

dropping.

droppers at different distances obtain a negligible amount of

information about the wearable’s and the device’s measure-

ments. The mutual information between the eavesdropper and

the wearable (device) is less than 0.01, which indicates that

the eavesdropper can learn less than 0.01 bit for 1 bit of

the wearable’s (device’s) bit sequences. Fig. 18 measures the

mutual information under different touch postures. The results

are consistent with Fig. 17, in that the eavesdropper can learn

less than 1% information about the wearable’s and the device’s

bit sequences.

5.3.3 Accelerometer-based Eavesdropping Attack

In some pairing cases, such as mobile payment, the touched

object is placed on a desk. The vibration signals generated in

TAG not only propagate over the air as acoustic signals, but

also propagate along the desk. To evaluate the leakage along

the desk, we place an accelerometer sensor on the desk 1-

11 inches in the proximity of the motor. The same algorithm

is employed by the pairing devices and the eavesdropper to

extract bits from the measured accelerometer data. Fig. 19

compares the mutual information between the pairing devices

and the eavesdropper. We observe that the mutual information

between the eavesdropper at distance of 1 inch and a legitimate

device is 0.38, while it quickly drops below 0.15 when the

eavesdropper is 3 inches or further away from the motor. When

the mutual information is below 0.15, the bit mismatch rate

between the eavesdropper and legitimate devices are as high

as over 44%. Thus, we conclude that TAG is safe against

accelerometer-based eavesdroppers at distances over 3 inches.

As unauthenticated devices within 3 inches can be easily

identified, 3 inches is a reasonably safe distance.
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Fig. 16. Comparisons of frequency response measurements. Amplitudes of each frequency is compared and plotted.

We use the dataset of all trials. The eavesdropper is 6 inches away.
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Fig. 20. Mutual information under different touch pos-

tures. The attacker uses accelerometer for eavesdrop-

ping.

(a) Cubic box. (b) Smartphone. (c) Mouse. (d) Glass cup.

Fig. 21. Different objects as the touched device.

5.4 Different Objects

To test the feasibility of our system on different objects, we

extend our experiments by using an additional set of objects

as the touched devices, as shown in Fig. 21. The participants

are asked to hold the smartphone or the mouse in their hands

wearing the wristband. The cup is placed on the desk and

the participants are asked to touch the area of the side. Other

settings are the same as described in Section 4.3. Fig. 22 shows

the bit mismatch rates of different objects. The performance

varies among different objects due to their different levels of

resonant properties in the vibration frequency range. For all

objects, the scheme without reconciliation achieves bit mis-

match rates lower than 5%, and the scheme with reconciliation

achieves bit mismatch rates lower than 0.5%, indicating the

feasibility of our system on these objects.
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Fig. 22. Bit mismatch rates of different objects.

6 DISCUSSION

This section discusses upper layer security protocols that can

be used in TAG, and security limitations of TAG.

6.1 Security Protocols

We investigated the feasibility of generating shared secret bits

from the resonant properties of the hand and the touched objec-

t. This provides an intuitive means to securely pair a wristband

wearable with another device. The focus of this paper is to

generate shared secret bits from both sides, which is a common

and essential step of most secure pairing protocols. Our system

can be applied to different secure pairing protocols, including

PIN-based authentication, two-factor authentication, and secret

key based encryption. In particular, the secret bits generated

from hand resonance can be used as the PIN code shared

by both sides, a proof of physical contact for the two-factor

authentication, or a basis to generate the secret key.

6.2 Visual Eavesdroppers

While we have empirically demonstrated that our system

is resistant to acoustic eavesdroppers in proximity, it has

certain limitations. Although the subtle vibrations of hand

resonance are too small to be captured by microphones, it

might be recovered by high-speed cameras. A recent study [20]

has successfully recovered acoustic signals from vibrations

using high-speed cameras. Although the vibrations of hand

resonance are weaker than audible sounds as in [20], it is

still possible for a high-speed camera to recognize the subtle
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vibrations of hand resonance and recover the measurements

of the accelerometers. Our main argument to this problem is

that our system is still safe against general shoulder surfers

using eyes or normal-speed cameras, which are threats to

conventional PIN code methods. One simple defense to high-

speed cameras is to block the line of sight. For example,

we can use the other hand to cover the hand performing the

pairing, much as we do to avoid shoulder surfers when typing

our passwords.

7 RELATED WORK

Secure pairing. Short-range communication techniques such

as Bluetooth and NFC are commonly used by today’s appli-

cations and devices for pairing as well as the following data

communications. However, it is very challenging to enable se-

cure pairing for wearables using NFC or Bluetooth due to their

broadcasting nature. As a wearable normally pair with another

device in a peer-to-peer fashion, we lack of a trusted authority

for key management that allows two legitimate devices to

agree on a common secret key before communication. To ad-

dress this predicament, there are many studies leveraging aux-

iliary channels to generate shared secrets. The shared secrets

can be generated from user interactions, auxiliary channels, or

authenticated with user actions or auxiliary channel. Examples

of the former include gesture-based authentication [7], [21]

that encodes authentication information as gestures defined by

authenticators or users, and the techniques that require users

to simultaneously provide the same drawings [22] or shaking

trajectories [23]. The auxiliary channel based approaches

leverage a special channel to create shared secrets. Many

studies use ambient environments, such as ambient sound [16],

[24], and radio environment [25], [26], as the proof of physical

proximity. The auxiliary channel itself is also leveraged as the

source to generate shared secrets. Normally, the two devices

send messages to each other within a short time to measure the

channel between them. Electromyography (EMG) sensors are

leveraged in [29] to capture the electrical activities caused by

human muscle contractions, which are encoded into secret bits

to pair devices in contact with one hand. Liu et al. [18], [30]

use the channel sate information (CSI) as shared secrets. Wang

et al. wang2018securing exploit the on-body creeping wave

propagation to authenticate on-body wearables and implant

devices using commercial Bluetooth traces. Different from

these approaches, this paper exploits a new and intuitive

method that generates shared secrets through hand resonance.

The advantages of TAG lie in its intuitive user interaction, and

the ubiquity of the required sensors, i.e., vibration motors and

accelerometers, in today’s wearables.

Several recent advances [31], [32] have proposed using

vibration signals to generate shared secrets for physically

connected devices. However, vibration signals leak over the

air and can be captured by acoustic eavesdroppers. Walkie-

Talkie [33] generates secret keys for on-body devices based on

gait features, which are extracted from accelerometer data. It is

designed for multiple body-worn devices in walking scenarios.

Vibration-based applications. Vibration properties of ob-

jects have been exploited to enable different applications. Ono

et al. [34] develop a touch sensing technique that recognizes a

rich context of touch postures based on the resonant changes

when users change their touch postures and positions. So-

Qr [35] estimates the amount of content inside a container

based on the vibration responses to acoustic excitations. Yang

et al. [5] study the vibration properties of different persons, and

design a wristband wearable to recognize household people

based on their vibration properties. This paper is inspired by

these studies, and takes it one step further in that we exploit

the resonant properties of two objects (a hand and its touched

device) in physical contact to facilitate secure pairing.

8 CONCLUSION

This paper presents TAG, a new and intuitive approach to

enable secure pairing for wearables. The insight is that a hand

and its touched object form a system whose resonant properties

are shared by both sides. We build a prototype to extract

shared secrets from the resonant properties using commercial

vibration motors and accelerometers. The ubiquity of vibration

motors and accelerometers in today’s smart devices maximizes

the chance of widespread acceptance of our system. We

demonstrate the feasibility of our system by evaluating it with

12 participants. We collect 1440 trials in total and the results

show that we can generate secret bits at a rate of 7.15 bit/s

with merely 0.216% bit mismatch rate.
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