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Abstract—The ability to detect which wearables and smart-
phones are on the same body has the potential to support a
wealth of applications, including user authentication, automatic
data synchronization, and personalized profile loading. This
paper brings this feature to commercial off-the-shelf (COTS)
wearables and smartphones, by creating a virtual “on-body
detection sensor” based on devices’ inherent wireless capabilities.
We investigate using the peculiar propagation characteristics
of creeping waves to discern on-body wearables. To this end,
we decompose signals into multiple independent components to
exploit the variation features of creeping waves. We implement
our system on COTS wearables and a smartphone. Extensive
experiments are conducted in a lab, apartments, malls, and
outdoor areas, involving 12 volunteer subjects of different age
groups, to demonstrate the robustness of our system. Results
show that our system can identify on-body devices at 92.3%

average true positive rate and 5% average false positive rate.

Index Terms—Creeping waves, wearables, on-body detection

I. INTRODUCTION

Smart wearable devices are drawing extensive attention as

they provide continuous services with frictionless user interac-

tions. A key feature desired by wearables is to provide unob-

trusive experience to users. Today’s wearables have success-

fully realized the functions of automatically and continuously

monitoring users’ physical activities and vital signs, without

interrupting the users. Recent advances in wearable computing

have transformed traditionally expensive and labor-intensive

tasks such as physical analytics [1] and pedestrian assistance

[2], into easy processes with unobtrusive interactions.

Existing efforts in developing unobtrusive wearables have

focused on the computing dimension, while the communi-

cation dimension, e.g., association and authentication, still

incurs some manual configurations. This becomes burdensome

when people use multiple wearables and share them with

other persons in a household. We argue that an essential

step towards unobtrusive communications is the ability that

a wearable/smartphone can automatically recognize which

devices are on the same body wearing it. Such an ability

enables automatic on-body authentication, data synchroniza-

tion among wearables and smartphones, and personalized

profile loading for household-shared devices. In our vision,

a user simply picks up a smart device, such as a heart rate

monitor, blood-pressure cuff, or game control, and the device
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Fig. 1. Motivation of using wireless signals for on-body detection. Most
COTS wearables are equipped with wireless chips.

would discover which smartphone/smartwatch is on the same

body and automatically synchronize the measured data to the

wearer’s personal record systems (e.g., HealthKit in iOS and

Google Fit in Android), or load a personalized profile (e.g.,

the profile for gaming or temperature preference for a thermal

control). In addition, when a user is unintentionally wearing

an unverified device (e.g., another person’s fitness sensor or

even a malicious device) or leaves a device unattended (e.g.,

a special disease sensor needs to be worn all day long), the

user’s smartphone/smartwatch or the unattended device would

discover the anomaly and alert the user.

We believe that it is essential for the on-body device detec-

tion solution to fully support versatile wearables equipped with

different sensors to maximize the chance of its widespread

acceptance. However, recent advances in automatic pairing

and user recognition [3]–[5] adopt special sensors, such as

accelerometers and light sensors, or some dedicated hardware.

They can only support a limited portion of today’s wearables

as the devices are equipped with a variety of sensors. One

easy solution to apply these ideas to general devices is adding

a dedicated sensor to each device, which, however, would

be expensive: it requires wearable device manufacturers to

undertake major hardware investments and also increases the

hardware cost of the devices. Moreover, accelerometer-based

approaches [4], [5] only work when wearers walk, and thus are

unsuitable for many healthcare monitors, e.g., blood-pressure



cuffs and smart waist bands, as well as scenarios where a user

is sitting or sleeping.

We believe that it is essential for the on-body device detec-

tion solution to fully support versatile wearables equipped with

different sensors to maximize the chance of its widespread

acceptance. Despite the diversity of wearables, most of them

are capable of wireless connectivity, as illustrated in Fig. 1.

These devices are normally connected to wearers’ smartphones

for data synchronization via low-energy wireless technology

such as Bluetooth. Hence, we argue that instead of relying

on special sensors, a better way to bring on-body detection

to universal wearables is to turn the general wireless chips

into “on-body detection sensors”. To this end, this paper

presents AutoTag, which exploits radio propagation features

obtainable in commercial wearables to automatically recognize

on-body devices. Our key insight is that on-body propagation

is dominated by creeping waves diffracted from human tissue

and trapped along the body’s surface [6]–[8], while the radio

waves of general off-body links are mainly composed of direct

line-of-sight (LOS) and multi-path propagations, as illustrated

in Fig. 2. The channel variations of creeping waves differ from

off-body links in that they are less sensitive to environmental

dynamics (multi-path and shadowing fading) and transmitter-

receiver (Tx-Rx) distance changes (LOS path loss) [6], [9],

but are more sensitive body motions. Thus, we can leverage

the distinct features of creeping waves to identify on-body

devices.

To realize the above idea, we entail the following chal-

lenges.

1) How to exploit radio propagation features without any

hardware changes to low-end wearables? Most wearables

adopt Bluetooth for communication, making it inapplicable

for them to use existing Wi-Fi-based techniques that extract

signal propagation features based on fine-grained channel

information [10] or even a large antenna array [11]. To over-

come this predicament, we leverage creeping waves’ peculiar

time-domain features that lie in Bluetooth-obtainable received

signal strength (RSS). In particular, we extract variations

caused by different factors by decomposing RSS traces into

multiple independent components, and then exploit the distinct

variation features of creeping waves to identify an on-body

link.

2) How to accurately extract the desired features when

signal propagation is largely affected by body motion? On-

body motion severely affects creeping paths and shadowing

fading, which may overwhelm the variations caused by other

factors. AutoTag therefore takes a two-step approach to obtain

the desired features. First, AutoTag makes an early stop to

extract the direct path loss variations based on temporal and

spectral properties. Then, AutoTag exploits variation patterns

to find signal fluctuation periods that are likely caused by

body motion, and eliminate these periods to obtain residual

variations caused by environmental dynamics.

Summary of results. We implement AutoTag on a wearable

system consisting of a Samsung Galaxy S4 smartphone and

multiple COTS wearables, including two smart wristbands

Multi-path propagation

Creeping wave

Body penetration

On-body

wearable

Off-body

wearablebody

wearablerabrabrabrabrabrabrabrabrabrabrabrabrabrabrabrabrablelelelelelele

Fig. 2. Illustration of on- and off-body radio propagation. On-body propa-
gation is dominated by creeping waves.

(Fitbit Force and LifeSense Mambo) and a smart waistband

(Lumo Back). On the whole, AutoTag achieves an average

true positive (TP) rate of 92.3% and false positive (FP) rate

of 5% for 12 volunteer subjects in different indoor and outdoor

environments. AutoTag can detect on-body wearables that

are placed at the neck, wrist, and waist with TP rate of

90.5%± 2.5% and FP rate of 3.5%± 1.5%.

Contributions. The main contributions of this work are

summarized as follows.

• We show that the RSS traces from COTS wearables can

be utilized to recognize wearers. Compared to previous

special-sensor based approaches, its major advantage is

that it can be applied to different types of wearables

without any hardware changes.

• We develop AutoTag, an on-body detection framework

that can run on wearable systems consisting of COTS

smartphones and wearables. The framework exploits dis-

tinct creeping wave propagation features to discern on-

body devices.

• We test our system on 12 volunteer subjects with over 76-

hour traces collected, and conduct extensive experiments

in a variety of environments, including a lab, apartments,

malls, and outdoor areas. The results show the effec-

tiveness of our system over different subjects, wearing

positions, and environments.

The rest of the paper is organized as follows. Section II

investigates the propagation characteristics of on-body devices,

followed by the system design overview in Section III. Section

IV and V elaborate the technical details. Section VI and VII

present experiment results, followed by literature review in

Section VIII. Section IX conclude the paper.

II. CHARACTERIZING ON-BODY RADIO PROPAGATION

A. Comparison of On- and Off-body Radio Propagation

Radio propagation is affected by direct path loss, multi-path,

and shadowing fading. For off-body links, i.e., Tx and Rx are

placed on different bodies with free space between them, the

RSS values are governed by the Tx-Rx distance (direct path
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(a) RSS distributions when wearers are static.
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(b) RSS distributions when wearers move hands
and arms.

−20 −10 0 10 20
0

50

100

RSS Variation subracted by mean(dB)

B
in

 C
o

u
n

ts

on−body

−20 −10 0 10 20
0

50

100

RSS Variation subracted by mean(dB)

B
in

 C
o

u
n

ts

off−body

(c) RSS distributions when wearers move freely.

Fig. 3. Histograms of RSS amplitude of on-body and off-body devices. The RSS traces are collected in a lab, where two persons keep a constant distance
of 4m. (a) and (b) are controlled experiments, while wearers in (c) move intermittently at their will.

loss gain) and dynamics of the environments (multi-path and

shadowing fading).

For on-body links, i.e., Tx and Rx are placed on the same

body, the radio propagation exhibits different patterns: the

RSS variations have low correlations with the Tx-Rx distance

and dynamics of the environments, but are highly sensitive to

body motion [9]. This is because radio waves can propagate

around the body via (i) penetration path that passes through the

body, and (ii) creeping path that diffracts around the body, as

illustrated in Fig. 2. According to previous study [6], creeping

wave plays a dominant role in on-body propagation, which

indicates that on-body radio propagation is easily affected by

body shape changes caused by body motion while other off-

body factors such as multi-path fading have less influence.

Based on the above observations, we can exploit distinct

radio propagation features to discern on-body devices. Fig. 3

shows results of a motivational experiment where each of the

two users wears a COTS wristband while only one user carries

a smartphone in a pocket. The RSS histograms are counted

based on five-minute traces collected in a lab, where two

persons keep a constant distance of 4m. When both users are

static (Fig. 3(a)), the RSS amplitude of the on-body device is

more stable. This is because on-body propagation is dominated

by the creeping path, while off-body propagation is easily

affected by environmental dynamics. When users move (Fig.

3(b)), the RSS of on-body links has larger variance as the

creeping path is more sensitive to changes in body shape.

B. Motivation of Decomposition

It is, however, non-trivial to directly detect on-body devices

from the RSS variations. The above examples are controlled

experiments where users’ movements are preset, while in real

cases (Fig. 3(c)) the users’ motion states and the environmental

dynamics are very complex and unpredictable. This makes it

difficult to directly extract features from RSS variations.

Recall that the instantaneous RSS is comprised of multiple

components that are caused by multiple independent factors,

including Tx-Rx distance, body motion, and environmental

dynamics. These factors reveal distinct patterns in on- and off-

body propagations. We observe that these factors contribute

to different scales of variations. Specifically, Tx-Rx distance

changes are gated by the speed of human movements, and thus

lead to relatively slow RSS variations (large-scale variations),

while body motion such as hand gestures and environmental

dynamics result in fast RSS fluctuations (small-scale variation-

s). Therefore, we can extract desired features by decomposing

the RSS time series into multiple components.

III. AUTOTAG DESIGN

AutoTag leverages the characteristics of creeping waves to

enable on-body detection on general COTS wearables with

wireless capability. The crux of AutoTag is to decompose

RSS traces into different levels of variations for propagation

feature extraction. Fig. 4 illustrates the framework of AutoTag.

It takes the RSS time series as input, which is collected

by a wearer’s carry-on smartphone. Note that many COTS

wearables (e.g., Samsung Gear Fit, Fitbit, Mio Alpha) syn-

chronize sensor readings with connected smartphones when

the corresponding smartphone applications are active. The

synchronization periods of these devices are around 0.5-1.5s.

AutoTag takes advantage of RSS traces from existing traffic

across wearable-smartphone links. If existing traffic, which is

device-dependent, is insufficient, the smartphone periodically

measures RSS by sending poll packets to wearables. When

there are no active sensor readings, AutoTag switches to sleep

mode to save energy.

The core of AutoTag is composed of two steps, Signal

Decomposition and Propagation Pattern Matching.

1) Signal Decomposition. AutoTag first partitions the

traces into multiple basic segments. Then, AutoTag

decomposes each segment into multiple independent

components, and clusters them into large- and small-

scale variations. The small-scale variations are fast RSS

fluctuations caused by multi-path fading. The large-scale



RSS Time Series

Variation 

Decomposition

Large-scale 

Variation

Small-scale 

Variation

Motion-induced 

Fluctuation 

Removal

Pattern Matching

Signal Decomposition Propagation Pattern Matching

Segmentation

Fig. 4. System flow of AutoTag.

variations are slow RSS fluctuations caused by obstacles

and changes in Tx-Rx distances.

2) Propagation Pattern Matching. After decomposing

RSS traces into different scales of variations, AutoTag

eliminates the impact of body motion to derive residual

variations caused by environmental dynamics, and then

matches the variation features of each segment to on/off-

body radio propagation patterns.

The algorithms of AutoTag run on smartphones only, which

collect RSS traces of associated wearables and surround-

ing discoverable wearables. When a smartphone identifies a

taking-off event (from on-body to off-body state), it dissociates

with the corresponding wearable so that the wearable can

broadcast beacons to become discoverable to other smart-

phones. When a smartphone detects that the beacon RSS traces

of a free wearable fit the on-body propagation pattern, it tags

the wearable as an on-body device, and associates with the

device.

IV. SIGNAL DECOMPOSITION

The first step of AutoTag is to decompose RSS mea-

surements into multiple components. AutoTag first divides

RSS time series into segments, and then performs signal

decomposition to derive multi-scale variations.

A. Signal Segmentation

A segment is the basic unit for pattern matching, and its

interval should be carefully selected. If the segment interval is

too long, one segment may contain both on-body and off-body

states, which may mislead pattern matching. If the segment

interval is too short, RSS samples in one segment may not be

sufficient enough to extract variation features. AutoTag selects

the shortest interval that provides satisfactory performance. An

interval of T = 20s is found to be able to distinguish over 90%
on- and off-body wearables.

B. Multi-Scale Variation Decomposition

1) Variation Component Characteristics: As discussed in

Section II, the composition of the RSS time series is complex,

in that signal variations are contributed by many factors. This
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Fig. 5. Signal processing procedure of multi-scale variation decomposition.

makes it difficult to directly extract features from RSS vari-

ations. To overcome this predicament, AutoTag decomposes

the RSS time series into multiple components.

Recall that the instantaneous RSS (in dB) is comprised of

multiple components that are caused by multiple independent

factors, including Tx-Rx distance, body motion, and envi-

ronmental dynamics. These factors reveal distinct patterns in

on- and off-body propagations. We observe that these factors

contribute to different scales of variations. Specifically, Tx-Rx

distance changes are gated by the speed of human movements,

and thus lead to relatively slow RSS variations, while body

motion such as hand gestures and environmental dynamics

result in fast RSS fluctuations. Based on this observation,

AutoTag aims to extract the signal variations contributed by

each of these factors by decomposing the RSS time series

into variations of different scales. As illustrated in Fig. 5, the

signal processing procedure of multi-scale variation decompo-

sition first separates the RSS segment to multiple independent

components (Section IV-B2), and then groups them into large-

and small-scale variations (Section IV-B3). The next two

subsections describe the two steps, respectively.

2) Independent Component Decomposition: A direc-

t method to derive variations of different scales is to de-

compose RSS traces into multiple spectral components using

filters. However, it is difficult to identify the cut-off frequencies

for partitioning, as the spectral property of RSS variations

varies across different environments and contexts. To ad-

dress this issue, AutoTag employs single channel independent

component analysis (SCICA) [12], which is widely used in

biometric signal processing. The major advantages of SCICA

are two-folds. First, it separates a multivariate signal into

independent non-gaussian components. This fits our target of

deriving multiple independent variations. Second, it requires

no prior knowledge about spectral properties of components,

which removes the need to set cut-off frequencies.

Generally, SCICA works by transforming a time series such

that the statistical dependences between the output components



are minimized. It includes three steps: embedding, separation,

and recovery.

In the embedding step, an RSS segment r

= [r(1), r(2), ..., r(T )]⊤ is mapped into an L×K matrix V,

which is expressed as

V =











r(1) r(2) · · · r(K)
r(2) r(3) · · · r(K + 1)

...
...

. . .
...

r(L) r(L+ 1) · · · r(T )











, (1)

where L = T − K + 1 is the embedding dimension and K
the number of consecutive delayed segments. The practical

minimum size for L is fs/fl [13], where fs denotes the

sampling frequency and fl the lowest frequency of interest

in RSS signals. AutoTag sets fl = 0.5 Hz and adopts a larger

L = ⌈1.5 × fs/fl⌉ to capture substantial information from

noisy and heavily correlated RSS traces.

The separation step searches for a transformation matrix W

that decomposes V into multiple independent components

V =

n
∑

i=1

a1u
⊤
1
+ ...+ aLu

⊤
L
, (2)

where W = [a1, ...,aL]
−1 and {ui : ∀i} are the independent

components to be extracted. Note that we use the column

vector as the default format. In our implementation, we adopt

the FastICA algorithm [14] to derive W. FastICA has the

merits of fast and stable convergence, which is suitable to run

on resource-limited smartphones.

FastICA treats it as an optimization problem, and iteratively

estimates W by searching the direction that maximizes the

non-Gaussianity of the projection U = [u1, ...,uL] = WV.

After deriving the transformation matrix W, the recovery

step maps U back to the measurement space using

Y
i = aiu

⊤
i
, (3)

where ui is the ith column of U. The delay matrix Y
i

is projected to a time series component si by applying the

diagonal averaging [13], which is an inverse procedure of the

embedding step.

3) Multi-Scale Variation Clustering: The raw RSS signals

are collected in an apartment where one user walks with a

smart wristband (as the on-body wearable) and a smartphone

in her pocket, while another user walks with a wristband (as

the off-body wearable). We observe that {si : ∀i} can be quite

a few (around ten components) and multiple components may

associate with a single factor. Recall that we are interested in

identifying variations caused by direct path loss, environmental

dynamics, and body motion. Direct path loss exhibits lower

frequencies of variations than the other two factors, and can

thus be easily extracted from derived components. Though

possessing different variations, features of environmental dy-

namics and body motion are harder to distinguish as both

result in shadowing fading. Hence, AutoTag first extracts

direct path loss variations by grouping the components into

two main clusters, i.e., large-scale and small-scale variations,

where large-scale variations are contributed by direct path loss.

To derive large- and small-scale variations, AutoTag groups

variations based on agglomerative hierarchical clustering [15],

which treats each component as a singleton cluster at the be-

ginning and then successively merges pairs of clusters until all

clusters have been merged into a single cluster. The advantage

of hierarchical clustering is that it stores intermediate results

in the clustering procedure. For distance measure in clustering,

AutoTag employs Dynamic Time Warping (DTW), a popular

technique that computes an optimal match between two time

series with non-linear variations [16]. The hierarchical clus-

tering procedure successively merges clusters or components

with the smallest DTW distance.

V. PROPAGATION PATTERN MATCHING

After applying signal decomposition, AutoTag first exploits

signal fluctuations that are likely caused by body motion, and

removes them to derive residual small-scale variations. Then,

AutoTag matches the variations of an RSS segment to on/off-

body propagation pattern.

A. Motion-Induced Fluctuation Removal

Recall that signal fluctuations incurred by body motion

overwhelm other on-body variations (Fig. 3). As we have no

knowledge about the users’ motion states, the motion-induced

signal fluctuations can be misleading in pattern matching. To

eliminate the impact of body motion, AutoTag sanitizes small-

scale variations by removing the periods that contain motion-

induced signal fluctuation with high probability.

From existing measurements [6], [17]–[19] and our empir-

ical study, we observe that

• Body movements induce significant fluctuations of path

gain and fading. Measurement results from many studies

[6], [17], [18] have shown that signal fluctuations incurred

by body motion are several times larger than those when

wearers are static. From RSS traces of an on-body device

collected from the carry-on smartphone, we observe that

the signal variations in the hand movement period is 2-3

times larger than those in the static period.

• The frequencies of body movements fall into a low

frequency range. Most frequencies of hand gestures fall

into [0.3, 4.5] Hz [19], and the frequencies of other body

movements are even lower. We observe that most large

variations during body motion fall between 0.5 Hz and

2 Hz.

AutoTag minimizes the impact of body motion by applying

a low pass filter with cut-off frequency of 0.5 Hz to the large-

scale variation component, and treats the residual components

as variations incurred by environmental dynamics.

B. Multi-Scale Variation Pattern Matching

So far we have obtained residual large-scale variations and

small-scale variations. We then exploit the features in these

two scales of variations to match the RSS segment to the

on/off- body propagation pattern. Due to the fact that the



main on-body propagation form, i.e., the creeping wave, is

insensitive to environmental dynamics, we can discriminate

among the propagation patterns by examining the variations

caused by these two factors.

Specifically, we define a utility function that is a weighted

sum of the significance of these variations:

u = ασl + βσs, (4)

where α, β are the weights for the standard deviations σl, σs

of large- and small-scale variations, respectively.

To determine α, β, we adopt a heuristic approach by mea-

suring the standard deviations in on- and off-body traces.

The traces are collected over a short period of time (e.g.,

15 min) in different scenarios, including malls, apartments

and outdoor areas. We first compute the average standard

deviations {σ̄on
l
, σ̄on

s
} in on-body traces and {σ̄off

l
, σ̄off

s
} in off-

body traces. We allocate proportionally more weights to the

coefficient of which the standard deviations in the two traces

have a larger difference, that is,

α

β
=

σ̄on
l

− σ̄off
l

σ̄on
s

− σ̄off
s

. (5)

To match the RSS segment to on/off-body propagation pattern,

we compare u with a threshold as follows
{

u ≥ α(σ̄on
l

+ σ̄off
l
)/2 + β(σ̄on

s
+ σ̄off

s
)/2 ⇒ off-body

u < α(σ̄on
l

+ σ̄off
l
)/2 + β(σ̄on

s
+ σ̄off

s
)/2 ⇒ on-body

.

(6)

VI. MICRO-BENCHMARK EXPERIMENTS

The target of micro-benchmark experiments is to evaluate

our system performance in different basic scenarios. Specifi-

cally, we evaluate our system when wearers are in 9 different

motion states.

A. Experimental Setup

1) Implementation and Setup: We implement AutoTag as

an Android background service on a Samsung Galaxy S4

smartphone. The smartphone runs Android 4.4 firmware and

is equipped with a Bluetooth 4.0 chipset to communicate with

wearables at 2.4 GHz. The AutoTag service implemented on

the smartphone sends poll packets to connected wearables

using Android API, and log RSS measurements for analysis.

We use Fitbit Force, LifeSense Mambo, and Lumo Back

as wearables. AutoTag only runs a background service in

smartphones, and does not require any modifications to COTS

wearables. Since AutoTag relies merely on standard Bluetooth

API in COTS devices, it can also be readily implemented on

other platforms such as iOS and Windows Phone.

We have conducted a series of experiments to evaluate the

performance of AutoTag in both controlled and uncontrolled

scenarios. The controlled experiments are conducted in a lab

and users are asked to walk or keep stationary. Challenging

scenarios such as walking side by side and sitting side by

side are evaluated. The uncontrolled experiments involve the

daily activities of 12 volunteer subjects, and are conducted in

apartments, malls, and outdoor areas.

Sub1

Sub2

                

            

                

            

Sub1's walking activity

Sub2's walking activity

Fig. 6. Floor plan of the lab environment for benchmark experiments.

Metrics. We use the following metrics to evaluate the

performance of our system.

• True positive (TP) rate. TP rate is defined to be the ratio

of the number of segments in which the on-body wearable

is correctly detected to the total number of segments.

• False positive (FP) rate. FP rate is the ratio of the

number of segments in which the off-body wearable is

falsely recognized as being on-body to the total number

of segments.

2) Lab Environments: The micro-benchmark experiments

are conducted in a lab, whose layout is depicted in Fig. 6.

We present the extensive evaluations of our system in real

environments in Section VII. The lab consists of 36 cubics.

There were 4 and 36 students in Lab1 and Lab2, respectively,

and most of them sat in front of their desks, while only a

few students were walking during experiments. We conduct

experiments on different days during work hours.

3) Wearer Motion States: The benchmark experiments in-

volve two volunteers Sub1 and Sub2, and each of them wear

a smart wrist band (i.e., Fitbit Force and LifeSense Mambo).

Sub1 puts the smartphone in her pocket when she is off her

seat. Sub1 may hold the phone, put it in pocket, or place it

on her desk when she is sitting. We consider 9 motion state

scenarios as described in Fig. 7, where each wear have the

following three motion states.

• Static. In static state, the wearer sits in front of her desk

and makes no body motion like gestures and hand/arm

movements. In this state, the wearer can be asleep or

watching video.

• Body Motion. In body motion state, the wearer sits in

front of her desk and makes body motion. These body

motion includes cleaning desk, tapping keyboard, and

other occasional hand/arm movements.

• Walking. In walking state, the wear walks along the aisles

in the lab as shown in Fig. 6.

We collect total 4.5-hour RSS traces for analysis, with 0.5

hour for each state combination.
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Fig. 7. TP and FP rates under various wear motion states.

B. Results

Fig. 7 shows the TP and FP rates of our system under

various wearer motion states. For all cases demonstrated in

Fig. 7(a), on-body devices are correctly recognized with ratios

over 79%. The average TP rates of different on-body states

have the following relation: Walking > Static > Body Motion.

The reason is that in the Walking state, the hand and leg

movements are oscillatory, which makes it easy for AutoTag

to remove body motion with high precision. In the Static state,

the placements of the smartphone are versatile: it may be

placed on desk, held in the hand, or put in a pocket. These

different placements increase the uncertainty of the creeping

wave propagation, thereby slightly dragging down the TP rate.

However, AutoTag still achieves over 85% TP rate in spite

of different smartphone placements. The TP rate in the Sub1

Body Motion state is lower than the others due to the imperfect

removal of motion-induced fluctuation.

In Fig. 7(b), the FP rate is lower than 17% in most cases

except the two cases of Sub1 being static. In the five Walking

cases, AutoTag achieves very low FP rates of 0-3%, as we

can exploit both large and small-scale variations to recognize

the off-body wearable. The worst cases are the states where

Sub1 is static while Sub2 is sitting (Body Motion and Static

states). In these two cases, the small-scale variations for Sub2’s

device are small, and thus are easily recognized as on-body

propagation. In real cases, the chance is rare for a person

to continuously remain static, and thus AutoTag can still

achieve a high detection accuracy. In the following section,

we conduct extensive experiments to validate AutoTag in real

environments.

VII. EVALUATION IN REAL ENVIRONMENTS

In this section, we evaluate AutoTag in real environments

with uncontrolled body motion. The experiments involve 12

volunteer subjects, and are conducted in apartments, malls,

and outdoor areas.

A. Experimental Setup

1) Enrolled Participants: We invite 12 volunteers, whose

basic information is listed in Table I, to participate in the

TABLE I
BASIC INFORMATION OF VOLUNTEER SUBJECTS.

Sub. 1 2 3 4 5 6 7 8 9 10 11 12

Sex F F F F F M M M M M M M

Age 21 26 50 59 81 17 22 25 26 53 54 61
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Fig. 8. FP and TP rates under various RSS sample periods in different
environments.

experiments. The subjects include a teenager, five college

students, five middle-aged people, and an elderly person. We

specifically select subjects to cover different age groups and

both genders. These subjects normally have different body

motion patterns. The elderly moves more slowly while younger

people move faster and are more active. The subjects also vary

in height and weight, ranging from 5 ft to 6 ft and 100 lbs to

190 lbs, respectively. The creeping wave propagations might

show different patterns on people of different shapes. We

intend to see whether body motion and shape affect the

experimental results.

2) Methodology: To validate AutoTag in real cases, we do

not control wearers’ movements as in controlled experiments.

We only ask volunteers to wear the devices, and then the wear-

ers continue their daily activities in different environments.

For example, in apartments, wearers may do housework, rest,

and dine as usual; while in malls, wearers walk and pick up

goods for shopping. Wearers are free to talk and make gestures

during the experiments. Unless otherwise stated, volunteers

wear the Fitbit Force or LifeSense Mambo on their wrists as

the wearables, and place the smartphone in a pocket or hold

it.

B. Evaluation in Different Scenarios

People wear devices in many different indoor and outdoor

areas. Indoor propagations significantly differ from outdoor

propagations, in terms of multi-path fading, shadowing, and

direct path loss. Moreover, the propagation patterns in dif-

ferent indoor environments (e.g., different layouts and user

densities) are also versatile. It is thus important to evaluate the

robustness of AutoTag in various environments. We study the

following three representative scenarios. In each environment,

two subjects have wearables on and one of them carries a

smartphone.

• Residential environment. We test our system in three

different-sized (i.e., 1000 ft, 1300 ft, and 1600 ft2)

apartments. 2-6 other people including family members
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Fig. 9. TP and FP rates under various segment intervals in different
environments.

and visitors are co-located in the apartment. Wearers rest

on couch, watch TV, walk, cook, and clean floors during

our tests.

• Mall environment. This environment includes a small-

size supermarket (about 30 ft × 50 ft) and a large shop-

ping mall. The mall environments are very dynamic, with

people frequently passing by. The wearers go shopping

together, with a series of activities like walking, browsing,

and picking up the goods involved.

• Outdoor environment. The outdoor environment in-

cludes a plaza and a walkway. In the plaza, the two

wearers wander randomly, while in the walkway, the

two wearers walk side-by-side along the road. In both

cases, the wearers may chat with each other while making

occasional gestures.

We conduct the experiments over 14 different days, and

collect RSS traces of 25.01 hours, with 10 hours in the

residential environment, 6.26 hours in the mall environment,

and 8.75 hours in the outdoor environment.

1) Results: We evaluate the robustness of AutoTag in dif-

ferent environments in Fig. 8 and Fig. 9. The results show that

the TP and FP rates are similar over different environments

when the RSS sample period ranges from 100 ms to 300 ms,

and the segment interval is no larger than 30s.

Fig. 8 plots the FP and TP rates of AutoTag under various

RSS sample periods, where the segment interval is fixed to

20 s. Higher sample rates can provide finer-grained propa-

gation information. AutoTag achieves similar performance in

the three environments. We observe that for the sample rate of

100-200 ms, the TP rate is higher than 85%, and the FP rate

is as low as below 8%. Wearables are likely to be classified

as off-body devices (low TP and FP rates) when the sample

period is larger than 400 ms, as the small-scale variations

are mistakenly recognized as large-scale variations with high

probability due to low RSS granularity. The results indicate

that AutoTag performs well with a reasonable sample period

of less than 300 ms.

Then, we evaluate the performance of AutoTag under vari-

ous segment intervals in Fig. 9, where the sample period is set

to 200 ms. The TP rate is insensitive to variations in segment

intervals, and remains as high as over 91%; while the FP

rate increases quickly when the segment interval goes over

30 s. This is because the off-body pattern is more complex

than the on-body pattern, which increases the difficulty to

precisely decompose longer off-body RSS time series. Besides,

the optimal segment interval that offers the lowest FP rate

in the figure is 20 s, as the RSS samples in the segments

with intervals less than 20 s are insufficient to perform pattern

matching.

VIII. RELATED WORK

Sensor-based user recognition. The prevalence of smart

devices has spurred growing attempts and extensive efforts

in developing user recognition systems for new applications

and human-device interactions. Specific sensors are widely

used to discern users. A smart watch like device [3] is de-

veloped to recognize its wearer based on users’ bioimpedance

fingerprints. A special ring is developed to distinguish multiple

users that simultaneously interact with a capacitive screen

[21]. Chen et al. [22] use motion and light sensors to en-

hance facial recognition on smartphones. Srinivasan et. al

[23] deploy ultrasonic distance sensors above doorways in

a home to build a biometric identification system for multi-

resident home scenarios. Similarly, Hayashi et al. [24] develop

a user verification system based on body lengths and waving

gestures. The application scenario is limited to a population

size of a household. Ren et al. [4] exploit unique gait patterns

from smartphone’s accelerometers to build a user verification

scheme for mobile healthcare systems.

These systems capture individual differences using different

sensors, and build the basis for user verification. Different

from these systems, AutoTag aims to bring user recognition

ability to general COTS wearables using their built-in wireless

chipsets. Indeed, AutoTag can be built on top of these sys-

tems to biometrically identify wearers for general wearables.

For example, a smartphone use facial or gait recognition to

uniquely identify its wearer, while general wearables discern

their wearers’ identifies by recognizing on-body smartphones.

Motion tracking using wireless signals. Another body of

related work is motion tracking using wireless signals. These

studies exploit body radio reflection patterns for body motion

tracking or gesture recognition [11], [25], [26], activity dis-

crimination [10], and speech recognition [27]. These systems

require Wi-Fi monitors [10], [26], [27] or even multi-antenna

systems [11], [25] to acquire fine-grained channel information

(e.g., CSI). However, They cannot be applied to wearable

devices as most COTS wearables adopt Bluetooth for energy-

efficient communications. In wearable systems, only low rate

(¡10pkt/s) RSS traces are available.

Though the coarse-grained RSS traces provide low-

granularity propagation information, they are widely available

for low-end mobile devices. Several recent studies have pro-

posed using RSS traces of a single Tx-Rx pair for respiration

rate monitoring [28] and human queue tracking [29]. AutoTag

is fundamentally different from these proposals in that Auto-

Tag leverages the creeping waves related features embedded

in RSS traces to recognize on/off-body propagations.



Body-area network (BAN) channel characterization.

Many existing measurements have studied the propagation

model for on-body channels [6], [9], [17], [18], [30], [31].

These studies suggest that there exists substantial differences

in on-body and off-body propagations. Their measurement

results indicate that it is feasible to use radio propagations

to distinguish between on-body and off-body devices.

IX. CONCLUDING REMARKS

This paper presents AutoTag, a low hardware cost approach

for user recognition by extracting the distinct creeping wave

propagation features of on-body devices. AutoTag can be

applied to general wearables equipped with low-end wireless

connectivity such as Bluetooth. It only requires users to

carry smartphones or other dedicated devices with them, and

automatically recognizes wearers from RSS traces with sample

period of 100-300ms. The insight is that on-body radio waves

propagate mainly in the form of creeping waves, which have

unique characteristics reflected in RSS variations. AutoTag

exploits the RSS variations by decomposing them into multi-

scale variations, and extract the variation patterns to discern

wearers.

We demonstrate the generality of AutoTag by evaluating it

using different COTS wearables. The experiments are conduct-

ed on 12 subjects of different age groups, and the environments

cover lab, office, apartment, mall, coffee shop, plaza, walk

way, and so on. The results show AutoTag achieves an average

TP rate of 92.3% and FP rate of 5%, and it is robust for devices

wearing at different positions, including neck, wrist, and waist.
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