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Abstract

Location-based advertising (LBA) is rapidly developing with the surging popu-

larity of mobile devices and the advances in localization techniques. However,

many LBA applications aggressively collect users’ location data without pro-

viding clear statements on the usage and disclosure strategies of such sensitive

information, which raises severe privacy concerns. Existing privacy preservation

mechanisms normally require modifications at the user side or provide limited

protection. To overcome these limitations, we propose an LBA system to lever-

age insensitive users to broadcast location-based ads to the privacy-sensitive

users around them. To reward the privacy-insensitive users for delivering the

ads, we design a number-reward contract scheme, in which a set of ad broadcast

reward plans is offered to different insensitive users that select the most suitable

plans based on their utilities. In addition, we derive optimal contract designs

in both complete and incomplete information scenarios. Simulations are carried

out to verify the theoretical analysis. The results show that a win-win situation

is achieved, where every entity involved has an increased utility.
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1. Introduction

Location-based advertising (LBA) makes use of user location information

and pushes location related advertisements (ads) to users’ mobile devices. It is

one type of targeted advertising, where an ad broker is responsible for sending

ads to users based on users’ locations and preferences. Significant attention has5

been paid to LBA due to its user-tailored feature, which makes it efficient in

terms of converting users that read the ads into buyers [1, 2]. One of the first

LBA services was launched by ZagMe in Britain in late 2000 [3, 4]. Registered

users could receive ads and promotion information in the form of text messages

when they were in certain shopping malls. Nowadays, with the advances in mo-10

bile device and localization techniques, LBA is no longer limited to SMS-based

format and users can receive ads automatically without the need to activate the

service manually when they reach certain areas. Many users welcome LBA on

account of the convenience it brings. It makes shopping easier when the ads

that are related to the brands in the shopping mall are shown on their mobile15

devices. These factors together with the surging popularity of mobile devices

are contributing to the rapid growth of LBA [5].

Although LBA systems improve the efficiency of advertising, severe priva-

cy issues arise with these systems. Nowadays, the growing privacy threats of

sharing location-related information is becoming a concern of both users and20

governments [6]. Such privacy threats come from the fact that many adver-

tisers aggressively collect location data without clear statements about how to

use the data and whom the data will be shared with. Untrusted advertisers

that have access to users’ location data may sell such personal information to

third parties without user’s permission [7]. Moreover, malicious adversaries with25

criminal intent could pose a threat to individual security and privacy. Being

aware of such risks, users may not allow LBA systems to access their sensing

data, which in turn disables the functionalities provided by LBA, and thus,

causes inconvenience to the users.

To retain the benefits brought about by LBA, it is essential to incentivize30
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users to adopt the LBA systems. Existing efforts have focused on privacy p-

reserving mechanisms to encourage users to be involved in the LBA systems.

These mechanisms either require modifications at the user side [8, 9] or modify

user statistics [10, 11] to hide their information from advertisers and ad brokers.

However, these changes made on the LBA systems provide privacy protection35

at the cost of the benefits of advertisers or ad brokers. The advertisers may be

dissatisfied by the modifications at the user side, as these modifications make

them unable to track the accurate click count, which normally determines their

payments [12]. Similarly, ad brokers may not be in favor of modifying user

statistics as it compromises the accuracy of delivering personalized ads, which40

undermines the ad brokers’ profits. With these disadvantages in mind, advertis-

ers and ad brokers would naturally tend to refuse the adoption of these systems,

which hinders the promotion of these privacy-preserving mechanisms in the L-

BA systems. The target of this paper is to fill this gap by providing an LBA

framework that frees the systems from these modifications and can thoroughly45

preserve the private information of sensitive users.

Our key observation is that there are insensitive users (IUs) that are not

concerned about their location privacy [13], and we can leverage these IUs to

assist the ad dissemination without revealing the location information of sensi-

tive users (SUs). In particular, the ad broker can directly send location related50

ads to IUs, who forward the ads to surrounding SUs. As such, SUs can enjoy

these ads without leaking their location information to advertisers or ad brokers.

To realize the above vision, several challenges should be addressed. The

first challenge is how to motivate different IUs to forward ads to SUs around

them. IUs need to spend energy and communication resources to forward ads55

to surrounding SUs. Moreover, IUs have different numbers of surrounding SUs,

which determines the types of IUs. Without proper incentive mechanism design

for versatile types of IUs, IUs may not be willing to assist the ad dissemination.

To motivate IUs, we propose a rewarding scheme for IUs using contract theory,

which is an effective tool to discuss how the incentive compatible mechanism in60

a monopoly market when asymmetric information exists [14]. In our scenario,
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the asymmetric information is types of IUs. Our key idea is to offer the right

contract items so that all IUs have the incentive to select the optimal contrac-

t according to their types. In particular, we characterize the necessary and

sufficient conditions for feasible contract, and further design a number-reward65

contract scheme that is optimal under both complete and incomplete informa-

tion scenarios.

Another challenge stems from the privacy leakage when counting the number

of viewers for each ad. Ad viewer counting is essential for advertisers and ad

brokers for the billing process, while SUs deem ad click behaviors as private in-70

formation and may not want them to be disclosed. To address this predicament,

we introduce an entity named publisher. Instead of direct sending ads to IUs,

the ad broker sends ad identifiers (IDs) to IUs and then IUs broadcast the IDs

to SUs around them. Users can extract the ads from the publisher based on the

ads’ IDs. As such, the publisher can count the number of viewers for each ad75

and moreover the number of ads forwarded by every IU. These two numbers are

important, because the ad broker charges advertisers based on the first number

and rewards IUs based on the second number.

The main contributions of this paper are threefold. First, we propose a

contract-based framework to motivate different types of IUs to broadcast ads80

to surrounding SUs. We analyze the necessary and sufficient conditions for

feasible contract, and design an optimal framework. Second, our LBA system

preserve users’ privacy without compromising the billing processing. Finally,

we conduct numerical simulations to validate the proposed framework under

different scenarios, and the results demonstrate that our system can reach a85

win-win situation, where every entity involved has an increased utility.

The rest of the paper is organized as follows. In Section 2, we describe

the system model and define the utility functions of the ad broker and IUs

respectively. In Section 3, we formulate the problem using contract theory and

analyze the contract design in complete and incomplete information scenarios.90

We present the simulation results in Section 4. Related works are reviewed in

Section 6. We summarized the paper in Section 7.
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Figure 1: System Structure

2. System Model

In this section, we first describe the LBA system architecture. Then, we

discuss the system model and define the utility functions of the ad broker and95

IUs.

2.1. System Overview

System architecture. Figure 1 shows the system structure. Our location-

based advertising system is comprised of a set of advertisers, an ad broker, a

publisher and a group of users. All entities are assumed to be rational and100

selfish, and merely care about their own utilities.

Advertisers and the ad broker. Advertisers and the ad broker are con-

sidered to be semi-honest, that is, they correctly follow the protocols defined in

the system, yet attempt to learn private information from their received data.

Advertisers send their ads to an ad broker, who is responsible for matching ads105

with users based on user location information. In this work, we mainly focus on

the interactions among the ad broker and users. To match ads with users, the

ad broker needs user location information, which is deemed private [15].
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Users. Users are divided into SUs and IUs according to their sensitivities to

location information. SUs are concerned about their privacy and by no means110

can the ad brokers push customized ads to these users directly. Differently,

IUs are insensitive to their privacy and enjoy the convenience brought about

by location-based services. Therefore, the ad broker can send location related

ads to IUs. It is worth noting that our system model is consistent with these

real-world platforms such as iAd and AdSense to push ads to users. In addition,115

if users store their interest profiles locally on their smartphones, the phones can

then automatically filter out uninterested ads without bothering the users. We

also assume that there is no click fraud, as click fraud can be addressed by

existing solutions [16, 17].

We categorize IUs into different types according to the total number of SUs120

around. Formally, the type of IUs is defined as

Definition 1 (Type of IUs). An IU is a type-s user if there are s SUs within

its communication range.

Our system leverages IUs to send location-based ads to SUs around them.

The model of using IU to forward ads to SUs is motivated by geographic so-125

cial networks, such as Foursquare, Twitter (nearby tweets), in which users can

receive messages from nearby users to find places of interest or topics in the

local region. After receiving ads from the ad broker, IUs broadcast the ads to

SUs around them by available wireless access networks (e.g. LTE broadcast,

WiFi or Bluetooth). The ad broker motivates IUs by paying them based on the130

number of ads they forward to SUs. As IUs only broadcast ad IDs while SUs

never communicate with IUs, the privacy of SUs is preserved from untrusted

IUs.

The publisher and Ad ID. Users can extract and view the ads from

the publisher. The publisher is a content provider on the Internet that sits in135

the middle of the ad broker and users for ad delivery and click counting. It

can be either one global provider or multiple local providers corresponding to

local shopping malls or stores, whose load can be balanced according to existing
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ID_A: Identify the Ad ID_B: Identify the IU

Figure 2: Format of an ad ID

techniques in content delivery networks [18].

To correctly count the number of viewers for each ad, the number of ad-140

s delivered by every IU without compromising the SUs’ privacy, we design a

mechanism as shown in Figure 1. Instead of sending the ads, the ad broker send

ad IDs to the IUs. Then, the IUs broadcast these ad IDs to the surrounding

SUs. Along with an ad ID, the ad title or tags are also sent to SUs. Alternative-

ly, SUs can cache all ad titles associated with IDs using prefetching, and then145

map received ad IDs to corresponding ad titles [9]. SUs decide whether they are

interested in an ad based on its title or tags, and interested SUs need to request

the full content from the publisher based on the ad ID. Certainly, different ads

have different IDs. Even for the same ad, the ad broker sends different IDs to

different IUs. In this way, the publisher can count the number of ads dissem-150

inated by different IUs as well as the number of viewers for each ad. Figure

2 shows the design of the ad ID. One ID is composed of two segments, ID A

and ID B. ID A is used to identify the ad and ID B is used to identify the IU.

Thus, when the ad publisher receives an ID, it will return the corresponding ad

based on ID A, add to the number of viewers for this ad, and meanwhile add155

to the number of ads delivered by the IU whose identity is ID B. The number

of bits assigned to each segment can be decided by the total number of ads and

the total number of IUs respectively. The publisher does not know which SUs

requested ads as the ad ID can only identify the ad and the IU that distribute

the ad, while the SU is anonymous.160

2.2. Utility Functions

In our model, we denote the cost of broadcasting once for an IU as c, which

is related to the energy consumption of the mobile devices. For simplicity, we

assume that one SU can only receive the broadcasts from the nearest IU. Due
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to lossy channel and high collision probability in dense user environments, one

time broadcasting can only successfully deliver the ad to a subset of surrounding

SUs. We denote p as the probability that one broadcasting successfully delivers

the ad to an interested SU. Therefore, for an IU with s surrounding SUs, the

number of SUs that will fetch ads from the publisher after the first broadcast

is p · s. Then, the number of SUs that fetch ads from the publisher after the

second broadcast is p · (1− p) · s as there are (1− p) · s SUs left that have not

fetched any ads. Thus, after the qth broadcast, the number is p · (1− p)q−1 · s.
To forward n ads in total, the number of broadcasting (l) the IU needs can be

calculated by the following equation

p · s+ p · (1− p) · s+ ...+ p · (1− p)l−1 · s ≥ n. (1)

And we have

l =

⌈
lg(1− n

s )

lg(1− p)

⌉
. (2)

Hence, the total cost of forwarding n ads for an IU that has s SUs around is

v(s, n) = c ·
⌈
lg(1− n

s )

lg(1− p)

⌉
. (3)

After delivering n ads to SUs, the IU gets a reward r from the ad broker.

Thus, the payoff (utility) for a type-si IU is

ui = r − c ·
⌈
lg(1− n

si
)

lg(1− p)

⌉
. (4)

We consider user types in an ascending order, i.e. s1 < s2 < ... < sT . The

higher the user type, the lower the cost and the higher the payoff. We assume

that IUs are selfish and rational, so they aim to maximize their own utilities.

Thus, the number of ads a type-si IU will deliver is

α(si) = argmax
n

{
r − c ·

⌈
lg(1− n

si
)

lg(1− p)

⌉}
. (5)

Obviously, IUs of the same type will adopt the same strategy. We denote the

set of all user types as S . By adopting this mechanism, the profit (utility) of

the ad broker is

Φ =
∑
si∈S

(A · ni − ri) ·Mi, (6)
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where Mi is the number of type-si users, A is the revenue received from adver-

tisers for delivering one ad to end users, ni is the number of ads a type-si IU

will forward and ri is the reward that the ad broker pays to IU for sending ni

ads. The first part
∑

A · ni ·Mi is the total revenue increased and the second165

part
∑

ri ·Mi is the total reward paid to IUs.

Our problem is to optimize the ad broker’s utility in Equation 6, given user

strategies as shown in Equation 5, which is to optimize their own strategies. We

will discuss the problem in Section 3.

3. Contract Formulation and Design170

In this section, we first formulate the system model as a contract and dis-

cuss the incentive compatible and individual rational constraints for a feasible

contract. Then we analyze the contract design under complete and incomplete

information scenarios respectively.

3.1. Design Rationale175

Contract theory is initially applied in supply chain to provide incentives

to all entities in the chain [19]. The basis of contract theory is to coordinate

production quality/quantity and pricing so that the decentralized supply chain

behaves nearly or exactly the same as the integrated one. These features of

contract theory makes it suitable for our framework. In our framework, one ad180

broker needs to motivate different types of IUs, who make their decisions in a

distributed manner. Specifically, we design proper contracts to coordinate the

types of IUs and ad dissemination rewards. This is similar to the coordination

between production quality/quantity and pricing in supply chain: the types

of IUs determine their effectiveness of ad dissemination, which can be consid-185

ered as the quality of ad dissemination; similarly, the number of broadcasting

corresponds to the production quantity in supply chain.

A major advantage of contract theory is it can be used to address the infor-

mation asymmetry issue. In our framework, the types of IUs cannot be observed
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by the ad broker, and thus become the asymmetric information. We analyze the190

contract-based framework under both complete and incomplete information sce-

narios. Under the complete information scenario, the ad broker knows the user

type of every IU. Analogous to online social network (e.g., Facebook, Twitter)

settings [20], the privacy preference can be determined by the initial settings

when a user enters the LBA system. The number of surrounding users can be195

estimated based on carrier sensing in Wi-Fi. In particular, an IU estimates

the number of surrounding users by counting the number of MAC addresses

it can hear during carrier sensing. Then, the number of SUs is estimated by

subtracting the number of IUs from the number of all users. Alternatively, we

can also adopt a similar protocol to count the number of SUs without leaking200

their identities based on [21]. Under the incomplete information scenario, the

ad broker has no access to user type information of every IU, but knows the

distribution of the user types.

Detailed user type determination process is presented in Algorith-

m 1. It takes two steps: 1) IU and SU determination (line 2), and205

2) IU type determination (lines 3-8). The type of device (IU or SU)

can be determined by the initial settings in the LBA system. By

toggling the location service setting, users can decide whether allow

the service provider to access their location information. Then, an

IU estimates the number of surrounding users by counting the num-210

ber of MAC addresses it can hear during idle listening. Then, the

number of SUs is estimated by subtracting the number of IUs from

the number of all users.

3.2. Contract Formulation

In the presence of asymmetric information, which is the user type in our case,215

contract theory studies how the ad broker constructs contractual arrangements.

The ad broker proposes a contract which clarifies how the reward of an IU is

related to the number of ads it forwards. The contract is a set of number-

reward pairs, denoted by ξ = {(n1, r1), (n2, r2), ..., (nT , rT )}. Each IU chooses
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Algorithm 1 User Type Determination
1: while A new user ui enters the LBA system do

2: ui selects the type of device (IU/SU), and uploads its type to the ad broker;

3: if ui type is IU then

4: ui performs idle listening for time T ;

5: ui counts the number of different MAC addresses N during T ;

6: ui fetches location data of other IUs, and computes the number of surrounding IUs

NIU ;

7: ui computes the number of surrounding SUs NSU −N −NIU ;

8: end if

9: end while

the number of ads nk to deliver and get a reward of rk once he or she has finished220

the task, that is there are totally nk SUs that fetch ads from the publisher by

IDs broadcasted from this IU.

For a feasible contract, the utility of every IU must be non-negative. Oth-

erwise, IUs, whose utilities are negative, will opt-out of joining this system and

not broadcast any ads at all. Hence, the contract should satisfy the individual225

rationality (IR) constraints, defined as follows.

Definition 1 (IR : Individual Rationality):

ri − c ·
⌈
lg(1− ni

si
)

lg(1− p)

⌉
≥ 0, ∀si ∈ S . (7)

Moreover, IUs of any type must have their preferred contract itemsets, i.e.

a type-si IU prefers to deliver ni ads to SUs and obtain a reward of ri over any

other choices. That is, a feasible contract must be incentive compatible (IC),

defined as follows.230

Definition 2 (IC : Incentive Compatibility):

ri − c ·
⌈
lg(1− ni

si
)

lg(1− p)

⌉
> ri′ − c ·

⌈
lg(1− n

i
′

si
)

lg(1− p)

⌉
, ∀si, si′ ∈ S . (8)

To sum up, a feasible contract must be incentive compatible (IC) and indi-

vidual rational (IR), and vice versa any contract that satisfies the IC and IR

constraints is feasible.
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The optimal contract ξ∗ = {(n∗
i , r

∗
i )} for the ad broker is the one that

maximizes its utility in Equation (6), that is

{(n∗
i , r

∗
i )} = arg max

(ni,ri)

∑
si∈S

(A · ni − ri) ·Mi. (9)

Therefore, we need to solve Equation (9) subject to the IC and IR con-

straints. Next we discuss how to design the optimal contract in complete and235

incomplete information scenarios.

3.3. Contract Design under complete information

In this subsection we discuss the scenario where the ad broker has complete

information about IUs. It knows the user type of each IU. Therefore, the ad

broker can treat every IU separately and offer a type-dependant contract to it:240

(ns, rs) for type-s IUs. Since for every IU there is only one customized contract

item, we do not need to discuss the IC constraint in this circumstance. For the

IR constraint, it must be satisfied as an equality.

Lemma 1: If the ad broker has complete information of si for every IUi, the

optimal contract offered to IUi satisfies

r∗i − v(si, n
∗
i ) = r∗i − c ·

⌈
lg(1− n∗

i

si
)

lg(1− p)

⌉
= 0. (10)

Proof. We prove it by contradiction. We assume that the optimal contract

(n∗
i , r

∗
i ) makes r∗i −v(si, n

∗
i ) greater than zero. If we set r

′
i = r∗i −(r∗i −v(si, n

∗
i )),245

the contract still satisfies the IR constraint and will increase the utility of the ad

broker. Therefore, (n∗
i , r

′
i) is a better contract than (n∗

i , r
∗
i ), which contradicts

the assumption that (n∗
i , r

∗
i ) is optimal.

Thus the problem is relaxed to

max
{(ni,ri)}si∈S

A · ni − ri, (11)

s.t. ri − v(si, ni) = 0. (12)

By solving this problem, we have the following results.250
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Algorithm 2 Designing feasible and optimal contract in complete information

scenario
for each user type si do

n∗
i = si +

c
A·lg(1−p) ;

r∗i = c · lg −c
A·si·lg(1−p)

lg(1−p) ;

end for

Proposition 1: Under complete information, the optimal contract (n∗
i , r

∗
i )

offered by the ad broker to a type-si IU is⎧⎪⎨
⎪⎩
n∗
i = si +

c
A·lg(1−p) ,

r∗i = c · lg −c
A·si·lg(1−p)

lg(1−p) .

(13)

Proof. The first derivative of ϕi = A · ni − ri is
∂ϕi

∂ni
= A− dri

dni
. For simplicity,

we approximate Equation (10) to ri = c · lg(1−ni
si

)

lg(1−p) . Thus when ∂ϕi

∂ni
= 0, we can

get the result in Equation (13). Accordingly, ∂2ϕi

∂n2
i
= c

lg(1−p) · 1
(ni−si)2

< 0. Thus

(n∗
i , r

∗
i ) is the optimal contract set the ad broker will offer to a type-si IU.255

As such, the social surplus, that is defined as the aggregated utility of the

ad broker and the IUs, is

Υ(si, ni) = A · ni −
⌈
· lg(1−

ni

si
)

lg(1− p)

⌉
. (14)

We can see that the contract set given in Equation (13) also maximizes the

social surplus. Therefore, the solution is efficient. With the seller, that is the

ad broker in our case, taking all the surplus while the buyers, that are the IUs,

getting no surplus, this solution is called perfect price discrimination.

3.4. Contract Design under Incomplete Information260

In this subsection, we analyze the contract design under incomplete infor-

mation. The ad broker only knows the distribution of user type instead of the

13



exact user type of every IU. Thus, it should offer the same contract items to

all the IUs. Designing the contract under incomplete information is much more

challenging compared to the former scenario.265

3.4.1. Feasible Contract

We suppose there are totally T different types of IUs, denoted as s1, s2, ..., sT .

As analyzed above, the same type of IUs will choose the same contract item.

To solve the problem in Equation (9), which is subjected to the IR and the IC

constraints, we first study the necessary and sufficient conditions for a feasible270

contract.

Lemma 2 (First necessary condition): A feasible contract ξ = {(nt, rt)}
satisfies the following condition: ni > nj if and only if ri > rj .

Proof. We first prove that if ni > nj , then ri > rj . According to the IC

constraints, we have that for a type-si user ri − v(si, ni) > rj − v(si, nj). That

is ri − rj > v(si, ni) − v(si, nj). In addition, v(s, n) = c · lg(1−n
s )

lg(1−P ) , which is

obviously a strictly monotone increasing function with regard to n (note that

lg(1− P ) < 0). Hence we have

ri − rj > v(si, ni)− v(si, nj) > 0, (15)

that is ri > rj .

Next we prove that if ri > rj , then ni > nj . Similarly, according to the IC

constraints, we have rj − v(sj , nj) > ri − v(sj , ni). That is

v(sj , ni)− v(sj , nj) > ri − rj > 0. (16)

Hence v(sj , ni)− v(sj , nj) > 0. As analyzed above, v(s, n) is strictly monotone275

increasing. Thus, ni > nj .

This lemma shows that when an IU delivers ads to more SUs, it must receive

higher rewards.
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Lemma 3 (Second necessary condition): A feasible contract ξ = {(nt, rt)}
satisfies the following condition: if si > sj , ni ≥ nj .280

Proof. We prove it by contradiction. We assume that there are two contract

itemsets (ni, ri), (nj , rj) such that si > sj but ni < nj . According to the IC

constraints, we have ⎧⎪⎨
⎪⎩
ri − v(si, ni) > rj − v(si, nj),

rj − v(sj , nj) > ri − v(sj , ni).

(17)

Adding the two equations, we get

v(si, nj)− v(si, ni)− v(sj , nj) + v(sj , ni) > 0. (18)

As v(s, n) is a differentiable function, we can do the following calculation.

v(si, nj)− v(si, ni)− v(sj , nj) + v(sj , ni)

=

∫ nj

ni

vn(si, n)dn−
∫ nj

ni

vn(sj , n)dn

=

∫ si

sj

∫ nj

ni

vsn(s, n)dnds

=

∫ si

sj

∫ nj

ni

c

lg(1− P )
· 1

(n− s)2
dnds < 0

(19)

The last line stands because si > sj , nj > ni and
c

lg(1−P ) · 1
(n−s)2 < 0, which is

in conflict with Equation (18). Thus, all the contract items should follow the

condition that if si > sj , ni ≥ nj .

From this lemma, we can see that a higher type IU will choose to deliver ads

to more SUs. This is reasonable as a higher type IU has more surrounding SUs285

and it is easier to forward more ads.

The above two lemmas show the following necessary conditions for a feasible

contract:

n1 ≤ n2 ≤ ... ≤ nT , and r1 ≤ r2 ≤ ... ≤ rT (20)

We have ri = ri+1 when and only when ni = ni+1, which can be inferred from

lemma 2. Next we discuss the sufficient conditions for a feasible contract.
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Lemma 4: A contract ξ = {(nt, rt)} is feasible when it meets the following

conditions.290

• n1 ≤ n2 ≤ ... ≤ nT ,

• 0 ≤ v(s1, n1) ≤ r1,

• and for all i = 2, 3, ..., T ,

ri−1 +A ≤ ri ≤ ri−1 +B, (21)

where A = v(si, ni)− v(si, ni−1), B = v(si−1, ni)− v(si−1, ni−1).

Proof. We prove it by induction. We suppose ξk = {(n1, r1), (n2, r2), ..., (nk, rk)}
is a subset of ξ and is a contract for the first k types of IUs.295

We first prove that ξ1 is feasible. As there is one contract set for ξ1, we only

need to verify that it satisfies the IR constraints. From the second condition in

this lemma, we have r1 − v(s1, n1) ≥ 0. Therefore, ξ1 is feasible.

Then we suppose that ξk is feasible and verify that ξk+1 is also feasible

under this assumption. We first prove that ξk+1 meets IC constraints, i.e. for

∀i = 1, 2, ..., k ⎧⎪⎨
⎪⎩
rk+1 − v(sk+1, nk+1) > ri − v(sk+1, ni),

ri − v(si, ni) > rk+1 − v(si, nk+1).

(22)

From the left-hand side of Equation (21), that is ri−1 +A ≤ ri,we have

rk+1 ≥ rk + v(sk+1, nk+1)− v(sk+1, nk). (23)

As ξk is feasible, the IC constrains for type-sk IU must be satisfied, i.e.,

rk − v(sk, nk) ≥ ri − v(sk, ni), ∀i = 1, 2, ..., k. (24)

Combining Equation (23) and (24), we get

rk+1 − v(sk+1, nk+1)

≥ri − v(sk+1, nk) + v(sk, nk)− v(sk, ni). (25)
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Additionally, Equation (19) implies that

v(sk, nk)− v(sk, ni) > v(sk+1, nk)− v(sk+1, ni). (26)

Thus, we have

rk+1 − v(sk+1, nk+1) > ri − v(sk+1, ni), (27)

which proves the IC constraints for type-sk+1 IUs, i.e. the first Equation in

(22). Next we prove the second Equation in (22), i.e. the IC constraints for

type-si (i = 1, 2, ..., k) IUs with regards to type-sk+1 IUs. From right side of

Equation (21), we have

rk + v(sk, nk+1)− v(sk, nk) ≥ rk+1. (28)

As ξk is feasible, we have

ri − v(si, ni) ≥ rk − v(si, nk), ∀i = 1, 2, ..., k. (29)

Combining the above two equations, we have

ri − v(si, ni) ≥ rk+1 − v(si, nk) + v(sk, nk)− v(sk, nk+1)

≥ rk+1 − v(si, nk) + v(si, nk)− v(si, nk+1)

= rk+1 − v(si, nk+1).

(30)

Thus, we have proven that ξk+1 satisfies the IC constraints. Next we prove that

it also satisfies the IR constraints. As ξk is feasible, all the type-si (i = 1, 2, ..., k)

IUs meet the IR constraints. Thus, we only need to prove that for the type-sk+1

IUs, the following condition is satisfied.

rk+1 − v(sk+1, nk+1) ≥ 0. (31)

Obviously, v(s, n) is a strictly monotone decreasing function with regard to s,

which means v(sk+1, ni) < v(si, ni). Together with Equation (27), we have

rk+1 − v(sk+1, nk+1) ≥ ri − v(sk+1, ni)

≥ ri − v(si, ni) ≥ 0.
(32)
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The last line is the IR constraints for type-si IUs. Thus ξk+1 satisfies the IR

constraints.300

Up to now, we have proved that i) ξ1 is feasible and ii) if ξk is feasible, ξk+1

is feasible when the conditions in this lemma hold. Thus, ξ = (si, ni) is feasible

under these conditions.

Actually, lemma 4 is also a necessary condition of a feasible contract, which

can be proved by a similar process in this proof. Due to space limitation, we do305

not show it here.

3.4.2. Optimal Contract

In this subsection, we derive the optimal contract based on the lemmas

above. We analyze it in two steps. First we discuss the optimal rewards {rt}
for different types of IUs when {nt} are feasible and fixed. Then we find the310

optimal assignments of the number of ads to be delivered by different types of

IUs, i.e. {nt}.
From lemma 3 we know that for a feasible contract, n1 ≤ n2 ≤ ... ≤ nT as

s1 < s2 < ... < sT . We first tackle the problem as follows.

max
ri

i=T∑
i=1

(A · ni − ri) ·Mi, (33)

where the rewards satisfies the conditions in lemma 4.

Proposition 2: For a feasible contract ξ = {(nt, rt)} whose {nt} are fixed

and n1 ≤ n2 ≤ ... ≤ nT , the unique optimal rewards {r∗t } are

r∗t = r∗t−1 + v(st, nt)− v(st, nt−1). (34)

Proof. Obviously the contract designed in this lemma meets the conditions in

lemma 4. Therefore, it is a feasible contract.315

To prove that Equation (34) maximizes the utility of the ad broker, we

only need to prove that it minimizes
∑i=T

i=1 ri ·Mi as {ni} are fixed. We prove

it by contradiction. Suppose that there exists a feasible set of {r′
i} such that
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∑i=T
i=1 r

′
i ·Mi <

∑i=T
i=1 r∗i ·Mi. Then there must exist at least one reward r

′
k < r∗k.

From Equation (21) in lemma 4, we have

r
′
k − v(sk, nk) + v(sk, nk−1) ≥ r

′
k−1. (35)

Thus, we have

r∗k−1 = r∗k − v(st, nt) + v(st, nt−1)

> r
′
k − v(sk, nk) + v(sk, nk−1) ≥ r

′
k−1.

(36)

Continuing this process, we finally get r
′
1 < r∗1 = v(s1, n1), that is r

′
1−v(s1, n1) <

0. The IR constraints for type-s1 IUs are violated. Therefore, there does not

exist such a set of {r′
t} and {r∗t } maximizes the utility of the ad broker.

Then we prove that {r∗t } is unique. We assume that there exist another

feasible set {r′
t} �= {r∗t } and

∑i=T
i=1 r

′
i ·Mi =

∑i=T
i=1 r∗i ·Mi. There must exist at320

least one r
′
k which is smaller than r∗k. With the same process as above, we can

prove that it is impossible to have such a set of {r∗t }. Therefore, the rewards

assignment {r∗t } is unique.

To sum up, {r∗t } given in Equation (34) is optimal and unique.

With the result in proposition 2, we can further analyze the optimal setting325

of {nt}.

Proposition 3: The optimal {n∗
t } which maximizes the ad broker utility is

given by

n∗
t = argmax

nt

(AMtnt −Mtv(st, nt)− αt

T∑
i=t+1

Mi), (37)

where αt = v(st, nt)− v(st+1, nt).

Proof. From Equation (34) in proposition 2, we get

r∗t = v(s1, n1) +

t∑
i=1

βi, ∀t = 1, 2, ..., T, (38)
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Algorithm 3 Designing feasible and optimal contract in incomplete information

scenario
for each user type st do

n∗
t = argmaxnt(AMtnt − Mtv(st, nt) − αt

∑i=T
i=t+1 Mi), where αt =

v(st, nt)− v(st+1, nt);

while exists nk, nk+1, ..., nk+q that do not follow nk ≤ ... ≤ nk+q do

for i = k; i ≤ k + q; i++ do

ni = argmaxn
∑t=k+q

t=k (AMtnt −Mtv(st, nt)− αt

∑j=T
j=t+1 Mj);

end for

end while

r∗t = v(s1, n
∗
1) +

∑i=t
i=1 βi, where βi = v(si, n

∗
i )− v(si, n

∗
i−1);

end for

where βi = v(si, ni)− v(si, ni−1). Hence, the utility of the ad broker is

Φ =
T∑

t=1

(Ant − v(s1, n1)−
t∑

i=1

βi)Mt. (39)

Rearranging the items in the above equation to make items related to nt to-

gether, we have

Φ =

T∑
t=1

(AMtnt −Mtv(st, nt)− αt

T∑
i=t+1

Mi), (40)

where the only variable is nt. Thus by solving Equation (37), we can get an

optimal contract that maximize the ad broker’s utility.

So far, the contract we design satisfies the second and third conditions in

lemma 4. To make it feasible, it should also satisfies the first condition, that is

n1 ≤ n2 ≤ ... ≤ nT . However, there is no guarantee that the {n∗
t } in proposition

3 satisfies this condition. Suppose there is a subset nk, nk+1, ..., nk+q that does

not follow the rule. We can adjust it by setting

ni = argmax
n

k+q∑
t=k

(AMtnt −Mtv(st, nt)− αt

T∑
j=t+1

Mj), (41)
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Figure 3: Optimal numbers of ads to be delivered

where i = k, k + 1, ..., k + q. After this adjustment, nk = nk+1 = ... = nk+q,330

which can be proved by proposition 3 in [22]. Thus, the adjusted subset meets

the requirements from lemma 4.

To sum up, we can design the feasible and optimal contract in steps shown

in Algorithm 3.

4. Simulation335

In this section, we first introduce the simulation setup and then present the

simulation results to show the optimal contracts in complete and incomplete

information scenarios and analyze the utilities of the ad broker and IUs.

4.1. Simulation Setup

Table 1: User type distribution (N=220 users in T=10 types)

si 1 2 3 4 5 6 7 8 9 10

Distr. 1 4 8 12 16 20 24 28 32 36 40

Distr. 2 22 22 22 22 22 22 22 22 22 22

Distr. 3 40 36 32 28 24 20 16 12 8 4
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Figure 4: Optimal rewards

We implement the proposed framework using MATLAB. The simulation340

methodology conforms to existing privacy-preserving LBA proposals [9, 23] as

well as contract theory mechanism designs [22]. In our simulations, there are

totally T = 10 types of IUs. A higher type user has more SUs around it. Specifi-

cally,there are 5i SUs around type-si IU. We discuss three possible distributions

for IU types as summarized in Table 1. Unless otherwise stated, the probability345

of fetching ads for an SU P = 0.5, the average revenue of sending ads to one user

A = 0.1, and the cost of one broadcast c = 0.1. Note that we also vary these

parameters in certain figures to evaluate their impacts on the performance.

4.2. Simulation Results

We first present the optimal contract under different distributions for the350

complete and incomplete information scenarios. Figure 3 shows the optimal

number of ads to deliver, i.e. n, for different types of users, and Figure 4

shows the corresponding optimal rewards. When the ad broker has complete

information about IU type, it will offer a type-tailored contract set to each IU.

Thus, the contract is independent on the user type distribution. We find that355

under complete information, the ad broker will stimulate the IUs to deliver more
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Figure 5: Utility of the ad broker

ads with a relatively low reward especially for higher type IUs. This shows that

information is valuable, by which the ad broke can offer perfectly discriminating

price and get all the social surplus(as analyzed in section 3.3 and verified below).

In the presence of incomplete information, the ad broker has to offer the360

same contract to all the IUs. We find that when there is a larger portion of

high type IUs, the ad broker loses interest in the low type IUs and tends to

give more motivation to high type users as they are more lucrative. Oppositely,

with more low type IUs, the ad broker has to make use of these low type ones.

In this case, the ad broker has to pay higher rewards to motivate low type IUs365

to deliver more ads as the efficiency of ad delivery is lower for these IUs. By

low efficiency, we mean that as there are fewer SUs around, the audience of the

broadcast is smaller, and fewer SUs will receive ad IDs and ultimately fetch ads

from the publisher.

Next we discuss the utilities of the ad broker and all the IUs. From Figure370

5, we find that the ad broker always gain higher utility in complete information

scenario no matter how the IU types are distributed. This verifies our theoret-

ical analysis, which shows that the ad broker gains all the social surplus and
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maximizes it. In the same scenario (the complete or incomplete information

scenario), the ad broker gains the highest utility in distribution 1 and the least375

in distribution 3. This result agrees with the one shown in Figure 4, which

indicates that the ad broker needs to pay out higher rewards in distribution

3. Paying higher rewards means lower utility for the ad broker. In Figure 6,

we find that the IUs will get no utility in the complete information scenario as

analyzed in section 3.3. Although in distribution 3, every IU receives higher380

rewards, the total utility of all IUs is still lower. This is because most IUs are

lower types whose rewards are lower than the higher types.

Figure 7 presents an intuitive image about the utilities. Case a,b,c show

the utilities under distribution 1,2,3 respectively. For every case, the left-hand

one corresponds to the complete information scenario and the right-hand one385

illustrates the incomplete information scenario. The sum of the ad broker utility

and IU utilities is the social surplus. Obviously, with more higher type IUs, the

social surplus is higher as under this distribution more SUs are likely to receive

ad IDs and fetch ads from the publisher. In the incomplete information scenario,

as the IUs preserve their private information, that is their user types, the ad390

broker has to leave some utilities for the IUs to reach its own optimality. This

information asymmetry also leads to a decrease in social surplus as the ad broker

can not offer perfectly discriminate rewards to different types of IUs.

We also study how the change in parameters influences the utilities. Figure

5 and Figure 6 show that with the increase in the cost of broadcasting once,395

i.e. c, the utility of the ad broker decreases and the total utility of IUs will first

increase and then decrease. From Equation (13), we know that in the complete

information scenario when c increases, n will decrease and r will increase, that

is the ad broker will have less ads delivered but pay higher rewards. Therefore,

its utility will decrease, which is similar in the incomplete information case. For400

IUs, with the increase in cost, their rewards also increase. Thus, there exists

an optimality for them. As for parameter p and A, that is the probability an

SU will fetch ads from the publisher when receiving ad IDs and the revenue

of delivering ads to one more user, the utilities of the ad broker and IUs will
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Figure 6: Total utility of the IUs

increase, respectively. The trend is simple and obvious. Due to space limitation,405

we do not show the numerical result here.

Finally, we compare our proposed LBA system with the traditional one.

Figure 8 illustrates the states of the ad broker and the IUs in terms of their

utilities. In traditional LBA system, the ad broker can only push ads to IUs. In

our simulation model, there are totally N = 220 IUs and the average revenue of410

sending one ad is A = 0.1. As such, the revenue of the ad broker is 22 at most,

and this is also the profit (utility) of the ad broker as it does not need to pay

IUs for forwarding ads. In this case, the utilities of the IUs are zero. The red

dot in Figure 8 represents the state in traditional system (it is independent in

terms of the information completeness and user distribution). The purple dot415

represents the state in our proposed system under different scenarios and user

distributions. It is obvious that our system can increase the utility of at lease

one party. Specifically, in the presence of incomplete information, the utilities

of the ad broker and the IUs both increase. As such, a win-win situation is

achieved and both parties have the incentive to take part in our new system.420
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5. Discussion

This section discusses some practical considerations of the proposed frame-

work.

5.1. Provisioning for Pure SU systems

An essential observation in our framework is that there exists both IUs and425

SUs in the LBA system. Existing surveys and investigations [24, 25, 20] have

shown that there are still quite a large portion of people who deem location

information insensitive. Therefore, the case where all users are SUs is very rare.

In the extreme case of pure SU systems, our contract framework still work-

s by integrating it with existing economic compensation mechanisms. It has430

been reported that have reported that users are willing to trade their private

information for money [26, 27]. The economic compensation mechanisms that

pay users for revealing their personal information have already been widely con-

sidered in the literature [24, 25, 28]. Additionally, many companies, including

Bynamite, Yahoo, and Google, are also engaging in the purchase of users’ private435

information in exchange for monetary or non-monetary compensation [29, 27].
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Therefore, we can replace the role of IU in our framework with the SUs who are

willing to trade their location information for money.

5.2. Deployments Considerations

Our framework can be easily extended to existing LBA systems. Existing440

LBA systems contain advertisers, an ad broker, and users, while our framework

introduces an extra party, i.e., the publisher. In practice, the publisher can be

the local shopping malls, or the network provider who deploys the ad networks,

such as iBeacons. In practice, there are third parties that have already deployed

iBeacons for cooperative shopping malls to deliver ads to customers. In such a445

system, the publisher shares profit with the shopping malls. The LBA system

can be deployed as dedicated Ad networks such as iBeacon, or atop existing Wi-

Fi infrastructures that deliver ads through local access points. At the customer

end, customers can install the LBA app in their smartphones, such as GroupOn

and Macy’s.450
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6. Related Work

Location-based advertising is one type of targeted advertising. There are

some existing works that discuss the transparency properties and privacy prob-

lems of targeted advertising or location-based advertising. Chen. et al [2] take a

measurement study to reveal the correlations between format of advertisement,455

privacy, brand credibility and consumers’ attitudes. THe results show that cus-

tomers are more willing to accept LBA with less personal information revealed,

which motivates our design in the privacy preservation aspect. Bin et al. [30]

reveal that the majority of the targeted advertisements are related to travel and

tourism and shopping. Among these categories, location information is the most460

essential one. Subhankar et al. [1] point out that location information is sensi-

tive and location-based advertising should be on a permission basis. Based on

the privacy problem disclosed in the existing works, we exploit the way to make

the most out of location-based advertising in the presence of privacy issues. The

industry now allows users to set their advertising profile and opt-out of being465

tracked. One example is Google’s ad preference setting. However, as shown

in [31], there are still non-compliance instances and it is inconvenient to use.

Protocols like Do Not Track have been proposed to regulate online tracking [32].

Although main browsers today are supporting these protocols, the compliance

is not compulsory.470

There are some existing works that provide privacy preserving solutions.

Fawaz et al. [33] propose a privacy-preserving LBA framework in which users

form a cooperative group to request ads without leaking their identities. Artail

et al. [21] extend the framework by adding a billing system without a third-

party. MobiAd [34] provide privacy-preserving LBA by caching ads locally on475

users’ phones, and reports the clicks via a Delay Tolerant Networking (DT-

N) protocol. Our work differs from [33, 21, 34] in two aspects: i) We focus

on scenarios, e.g., shopping mall, where users move frequently and request ads

instantly while they require users to tolerate tens of seconds delay to form coop-

erative groups; ii) Our focus is to design an incentive mechanism that motivates480
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selfish advertisers, ad brokers, and users to adopt the LBA system, while they

focus on developing comprehensive secure protocols without systematic analysis

on incentive mechanisms. Privad [8, 17] introduce a new entity, referred to as

dealer, which is responsible for transmitting the communication between the ad

broker and users anonymously. The ad broker and the dealer have incomplete485

information respectively. User private information is preserved as long as the

two parities do not collude with each other. Murali et al. [9] propose to use

statistically falsified user information for ad targeting. An approximation algo-

rithm is discussed for this system and they claim that the performance is close

to optimal. Adnostic [35] uses a cryptographic system to preserve user privacy.490

The privacy problem is discussed by economic incentives in [28], where users

are aware of their privacy leakage and compensated for it. In all these systems,

user profiles are kept locally in their own devices. Ad filtering takes place at the

user side, that is user devices choose the ads their owners may be interested in

according to the local profile. This solution requires caching a lot of ads locally.495

Obliviad [23] retrieves private information based on safe hardware and mixes

electronic tokens to preserve clients’ private profiles. There are also works that

specifically discuss preserving location privacy. One solution is to collectively

change the pseudonyms of the mobile nodes in mix zones [36]. Another cat-

egory enables the users to set the information they are willing to share with500

third parties [10, 11]. For example, instead of accurately telling the ad server

its location, the user may be willing to reveal the fact that he or she is in a

certain city, which is a larger region. These solutions are either complicated to

implement or still leaking private information to some extent.

LBA essentially belongs to location-based services (LBSs). Numerous tech-505

niques have been proposed for preserving privacy in LBSs. Spatial cloaking and

anonymization are widely adopted [37, 38, 39], where a value provided by a user

is indistinguishable from those of k − 1 other users within a spatial region to

provide privacy guarantee. Private information retrieval (PIR) is leveraged [40]

to secure users’ location information. However, privacy preservation techniques510

for LBS have focused on location privacy, while ad click behavior protection
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is not considered. Additionally, they compromise location estimation accuracy

[37, 38, 39], or prevent click counting [40], which hinders the benefits of adver-

tisers and ad brokers, thereby making them unwilling to adopt these systems.

In this paper, we leverage contract theory, which is an extensively discussed515

topic in economics, into location-based advertising. Contract theory studies

how to coordinate the quantity/quality and price so as to maximize the seller’s

payoff in the presence of asymmetric information [14]. There are complete

contracts and incomplete contracts. For the former one, all possible states and

their consequences should be specified. Incomplete contracts proposed by Oliver520

Hart et al. [41] discuss the contract construction when complete information is

impossible.

7. Conclusion

In this paper, we propose an LBA framework where insensitive users are

leveraged to send ads to the sensitive users around them. In particular, we525

introduce the publisher and design an ad ID to count the number of viewers

for each ad as well as the number of ads delivered by every insensitive user,

and meanwhile guarantee the privacy of sensitive users. In addition, we de-

sign a number-reward contract to motivate the insensitive users to deliver ads.

Numerical results demonstrate that our proposed system can guarantee high-530

er utilities compared with the traditional LBA system. A win-win situation is

achieved and both the ad broker and the users have the incentive to participate

in our LBA system.

Our theoretical and numerical studies provide some implications on future

LBA systems. Our contract-based approach reveals that by rewarding users to535

forward ads, both users and ad brokers are motivated. As such, we can achieve

a win-win situation. For future work, we plan to extend our proposed system

to social networks, where users can be leveraged to forward the ads that they

receive and are interested in. In this way, ads can reach more audiences and

social network participants can get recommended ads from their friends. The540
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influential power of a forwarded ad will be studied.
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