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Securing On-Body IoT Devices By Exploiting
Creeping Wave Propagation

Wei Wang, Member, IEEE, Lin Yang, Qian Zhang, Fellow, IEEE, Tao Jiang∗, Senior Member, IEEE

Abstract—On-body devices are an intrinsic part of the
Internet-of-Things (IoT) vision to provide human-centric services.
These on-body IoT devices are largely embedded devices that
lack a sophisticated user interface to facilitate traditional Pre-
Shared Key based security protocols. Motivated by this real-
world security vulnerability, this paper proposes SecureTag, a
system designed to add defense in depth against active attacks
by integrating physical layer (PHY) information with upper-layer
protocols. The underpinning of SecureTag is a signal processing
technique that extracts the peculiar propagation characteristics
of creeping waves to discern on-body devices. Upon overhear-
ing a suspicious transmission, SecureTag initiates a PHY-based
challenge-response protocol to mitigate attacks. We implement
our system on different commercial off-the-shelf (COTS) wear-
ables and a smartphone. Extensive experiments are conducted
in a lab, apartments, malls, and outdoor areas, involving 12
volunteer subjects of different age groups, to demonstrate the
robustness of our system. Results show that our system can
mitigate 96.13% of active attack attempts while triggering false
alarms on merely 5.64% of legitimate traffic.

Index Terms—Creeping waves, on-body IoT, cross-layer design,
active attacks

I. INTRODUCTION

The vision of Internet-of-Things (IoT) has raised billions

of dollars and is taking the center stage in the 5th generation

wireless systems (5G). An essential part of the IoT vision is

to deliver human-centric services by sensing users’ biometrics

and activities by on-body smart devices. The minimalist design

paradigm of IoT appears to be a double-edge sword: it opens

up a range of possibilities for ultra low-power communica-

tions, but makes the communication vulnerable to malicious

attacks. Recent works have shown that wireless connectivity

can be compromised to send unauthorized commands to make

embedded IoT devices malfunctioning [1], [2].

Basically, IoT devices are low-end embedded devices that

lacks sophisticated user interface to facilitate traditional Pre-

Shared Key (PSK) security protocols. Recent advances lever-

age auxiliary channels [3]–[7] to secure wireless links. They

adopt special sensors, such as accelerometers and light sensors,

or some dedicated hardware, and thus can only support a

limited portion of today’s IoT devices. One easy solution to

apply these ideas to general devices is adding a dedicated

sensor to each device, which, however, would be expensive:

it requires wearable device manufacturers to undertake major

hardware investments and also increases the hardware cost of
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Fig. 1. Illustration of on- and off-body radio propagation. On-body propa-
gation is dominated by creeping waves.

the devices. We believe that it is essential for the security

solution to fully support versatile IoT devices to maximize

the chance of its widespread acceptance.

The dynamism of the wireless channel and the special prop-

agation waves induced by the human body present an exciting

opportunity: we can leverage the propagation information to

extract distinct patterns that discern legitimate on-body IoT

devices from attackers from afar. To this end, this paper

presents SecureTag, which exploits radio propagation fea-

tures obtainable in commercial wireless chips to continuously

authenticate and secure on-body IoT devices. SecureTag is a

cross-layer design to enhance wireless security by defending

against active attacks which inject a frame into the network

that lead to a denial-of-service state or a protocol deadlock.

SecureTag employs a propagation feature based proactive

protocol to authenticate the communication link and mitigate

active attacks.

The key enabling technique in SecureTag is to construct a

propagation signature that can identify on-body IoT devices.

Our insight is that on-body propagation is dominated by

creeping waves diffracted from human tissue and trapped

along the body’s surface [8]–[10], while the radio waves of

general off-body links are mainly composed of direct line-

of-sight (LOS) and multi-path propagations, as illustrated in

Fig. 1. The channel variations of creeping waves differ from

off-body links in that they are less sensitive to environmental

dynamics (multi-path and shadowing fading) and transmitter-

receiver (Tx-Rx) distance changes (LOS path loss) [8], [11],

but are more sensitive body motions. Thus, we can leverage
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the distinct features of creeping waves to identify on-body

devices.
To realize the above idea, we entail the following chal-

lenges.
1) How to exploit radio propagation features without any

hardware changes to low-end IoT devices? Most IoT links are

low-rate and energy-efficient, making it inapplicable for them

to extract signal propagation features based on fine-grained

channel information or even a large antenna array [12]. To

overcome this predicament, we leverage creeping waves’ pe-

culiar time-domain features that lie in commercial embedded

device obtainable received signal strength (RSS). In particular,

we extract variations caused by different factors by decom-

posing RSS traces into multiple independent components, and

then exploit the distinct variation features of creeping waves

to identify an on-body link.
2) How to accurately extract the desired features when

signal propagation is largely affected by body motion? On-

body motion severely affects creeping paths and shadowing

fading, which may overwhelm the variations caused by other

factors. SecureTag therefore takes a two-step approach to

obtain the desired features. First, SecureTag makes an early

stop to extract the direct path loss variations based on temporal

and spectral properties. Then, SecureTag exploits variation

patterns to find signal fluctuation periods that are likely caused

by body motion, and eliminate these periods to obtain residual

variations caused by environmental dynamics.
Summary of results. We implement SecureTag on a wear-

able system consisting of a Samsung Galaxy S4 smartphone

and multiple COTS wearables, including two smart wristbands

(Fitbit Force and LifeSense Mambo) and a smart waistband

(Lumo Back). On the whole, SecureTag mitigates 96.13%

of active attack attempts while triggering false alarms on

merely 5.64% of legitimate traffic for 12 volunteer subjects

in different indoor and outdoor environments. SecureTag can

protect on-body IoT devices that are placed at the neck, wrist,

and waist by preventing 97.74%±0.74% of active attacks with

a false alarm rate of 7.29%± 2.26%.
Contributions. The main contributions of this work are

summarized as follows.

• We show that the RSS traces from COTS wearables can

be utilized to recognize wearers. Compared to previous

special-sensor based approaches, its major advantage is

that it can be applied to different types of wearables

without any hardware changes.

• We develop SecureTag, an on-body detection framework

that can run on wearable systems consisting of COTS

smartphones and wearables. The framework exploits dis-

tinct creeping wave propagation features to discern on-

body devices.

• We test our system on 12 volunteer subjects with over 76-

hour traces collected, and conduct extensive experiments

in a variety of environments, including a lab, apartments,

malls, and outdoor areas. The results show the effec-

tiveness of our system over different subjects, wearing

positions, and environments.

The rest of the paper is organized as follows. Section II

investigates the threat model and the propagation characteris-

tics of on-body IoT devices, followed by the system design

overview in Section III. Section III-A and III-B elaborate the

technical details. Section IV and V present experiment results,

followed by discussion in Section VI and literature review in

Section VII. Section VIII conclude the paper.

II. MOTIVATION

In this section, we first discuss the potential threats to on-

body IoT communications. Next, we investigate the features

of on-body radio propagation, which motivates the design of

SecureTag.

A. Threat Model

We consider attackers that are not placed on the same human

body as legitimate IoT devices. The attackers can be carried

by another user or placed somewhere nearby to launch active

attacks. We only consider active attacks, as in most cases

attackers must transmit to penetrate the network. Note that

SecureTag does not provide any protection against passive

attacks, i.e., eavesdropping attacks. We make no assumptions

about the transmission power or antenna direction of the

attackers. The attackers may have breached existing securi-

ty protocol and have obtained the authentication credentials

during device association.

B. Characterizing On-Body Radio Propagation

The human body is mainly a low-loss dielectric medium

at microwaves frequencies, including Bluetooth and Wi-Fi

frequency bands. Thus, the human body has a large impact on

radio propagation between two devices carried by a user. The

electromagnetic (EM) waves can propagate around the human

body via (i) the penetration path that passes through the body,

and (ii) the creeping path that diffracts around the body, as

illustrated in Fig. 1. The penetration path incurs substantially

higher loss than the creeping path. It is reported in [13] that

the attenuation is approximately 120 dB at 2.4 GHz for a

penetration path of 30 cm. As a result, the creeping waves

along the body surface play a dominant role in EM wave

propagation.

Creeping waves transform the flat radiated field to the one

around a circular section, e.g., the surface of the human body.

The creeping wave propagation along the body surface consists

of clockwise and anti-clockwise paths. According to on-body

creeping wave theory [13], the electric field radiated by a

transmitting antenna at a distance d is expressed as

E =

√
η

2π

√
PtGt

d
e−jkdW (d, r, ε, ht, hr)

+

√
η

2π

√
PtGt

2πr − d
e−jk(2πr−d)W (2πr − d, r, ε, ht, hr),

(1)

where η is the vacuum wave impedance, Pt the transmission

power, Gt the antenna gain, k the wavenumber in free space,

and r the radius of body surface. W (·) is the attenuation

function that describes the losses caused by the complex

permittivity η of the human tissue, the curvature r of the body
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surface and the distances ht, hr between the body surface and

the antennas. Note that the above analysis focuses on vertical

polarized component, while the horizontal polarized compo-

nent suffers more attenuation. Therefore, the orientations of

on-body antennas also impact greatly on the path loss.

Eq. 1 implies that the attenuation of on-body propagation

is affected by body surface change and the positions and

orientations of the transmitting and receiving antennas, while

environmental changes have little impact on on-body propaga-

tion. In particular, body motion incurs changes in body surface

curves as well as antenna positions, which in turn affects W (·)
and the interference between clockwise and anti-clockwise

propagations. Therefore, on-body propagation is quite stable

when the body remains static, but varies significantly when

the body moves.

Although the path loss of on-body propagation varies for

different antenna locations, such as wrist, chest and waist,

the above statistical characteristics always hold. Measure-

ments [14], [15] for body area network channels report that

for different on-body locations, including wrist, waist, chest,

and leg, the path loss variation is less than 4 dB when the

person is stationary, while the variation is up to 30 dB when

the person is moving.

On the contrary, when the transmitting and receiving anten-

nas are placed on different bodies with free space between

them, referred to as off-body links, the signal propagation

is governed by the antenna distance (direct path loss gain)

and dynamics of the environments (multi-path and shadowing

fading). Even if the body remains static, off-body propaga-

tion may also fluctuate due to subtle environmental changes.

Compared to on-body propagation, off-body propagation is

less sensitive to body motion as changes in body surface and

antenna orientation have little impact on it.

Based on the above observations, we can exploit the distinct

radio propagation features to discern on-body devices. Fig. 2

shows the results of a motivational experiment where each

of two users wears a COTS wristband while only one user

carries a smartphone in her pocket. The pocket is the one

nearest to the other user. The two users first stand still at

a distance of 2 m, and then walk side by side. When both

users are static, the RSS of the on-body device is more stable.

This is because on-body propagation is dominated by the

creeping path, while off-body propagation is easily affected by

environmental dynamics. When the users walk side by side,

the RSS of on-body links has a larger variance as the creeping

path is more sensitive to body motion.

To conclude, on-body propagation is dominated by creep-

ing waves, which are insensitive to environmental dynamics

but are very sensitive to body motion. On the other hand,

these features disappear when the transmitting and receiving

antennas are placed on different users separated by a distance,

as the propagation is gated by rich-multipath radio channels,

scattering and diffraction caused by the environments.

III. SECURETAG DESIGN

SecureTag leverages the characteristics of creeping waves

to improve security of on-body IoT devices. The crux of
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Fig. 2. RSS variance comparison between on- and off-body propagations.
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SecureTag is to construct a propagation profile to authenticate

on-body devices by decomposing RSS traces into different

levels of variations for propagation feature extraction. Fig.

3 illustrates the framework of SecureTag. It takes the RSS

time series as input, which is collected by a user’s carry-on

device, such as a smartphone. Note that many COTS wearables

(e.g., Samsung Gear Fit, Fitbit, Mio Alpha) synchronize sensor

readings with connected smartphones when the correspond-

ing smartphone applications are active. SecureTag initiates

a proactive protocol when: i) a shared secret has not been

established yet during device association, ii) devices send

control messages that disallows encryption, and iii) the shared

secret has been compromised.

At PHY, the core of SecureTag is to extract propagation

features to identify legitimate on-body transmissions. Secure-

Tag takes two steps, Signal Decomposition and Propagation
Pattern Matching, to achieve this goal.

1) Signal Decomposition. SecureTag first partitions the

traces into multiple basic segments. Then, SecureTag

decomposes each segment into multiple independent

components, and clusters them into large- and small-

scale variations. The small-scale variations are fast RSS

fluctuations caused by multi-path fading. The large-scale

variations are slow RSS fluctuations caused by obstacles

and changes in Tx-Rx distances.

2) Propagation Pattern Matching. After decomposing

RSS traces into different scales of variations, SecureTag

eliminates the impact of body motion to derive residual

variations caused by environmental dynamics, and then

matches the variation features of each segment to on/off-

body radio propagation patterns.

At upper layers, SecureTag operates in concert with existing
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security protocols to offer defense-in-depth protection against

active attackers. Upon detecting malicious behaviors, Secure-

Tag initiates the propagation pattern check in the PHY, and

then mitigates attacks by a challenge-response protocol.

A. Signal Decomposition

The first step of SecureTag is to decompose RSS mea-

surements into multiple components. SecureTag first divides

RSS time series into segments, and then performs signal

decomposition to derive multi-scale variations.

Signal segmentation. A segment is the basic unit for pattern

matching, and its interval should be carefully selected. If

the segment interval is too long, one segment may contain

both on-body and off-body states, which may mislead pattern

matching. If the segment interval is too short, RSS samples in

one segment may not be sufficient enough to extract variation

features. SecureTag selects the shortest interval that provides

satisfactory performance. An interval of T = 20s is found to

be able to distinguish over 90% on- and off-body wearables.

Multi-scale variation decomposition. As discussed in Sec-

tion II, the composition of the RSS time series is complex, in

that signal variations are contributed by many factors. This

makes it difficult to directly extract features from RSS varia-

tions. To overcome this predicament, SecureTag decomposes

the RSS time series into multiple components.

Recall that the instantaneous RSS is comprised of multiple

components that are caused by multiple independent factors,

including Tx-Rx distance, body motion, and environmental

dynamics. These factors reveal distinct patterns in on- and off-

body propagations. We observe that these factors contribute

to different scales of variations. Specifically, Tx-Rx distance

changes are gated by the speed of human movements, and thus

lead to relatively slow RSS variations, while body motion such

as hand gestures and environmental dynamics result in fast

RSS fluctuations. Based on this observation, SecureTag aims

to extract the signal variations contributed by each of these

factors by decomposing the RSS time series into variations of

different scales. As illustrated in Fig. 4, the signal processing

procedure of multi-scale variation decomposition first sepa-

rates the RSS segment to multiple independent components,

and then groups them into large- and small-scale variations.

A direct method to derive variations of different scales is

to decompose RSS traces into multiple spectral components

using filters. However, it is difficult to identify the cut-off

frequencies for partitioning, as the spectral property of RSS

variations varies across different environments and contexts.

To address this issue, SecureTag employs single channel in-

dependent component analysis (SCICA) [16], which is widely

used in biometric signal processing. The major advantages of

SCICA are two-folds. First, it separates a multivariate signal

into independent non-gaussian components. This fits our target

of deriving multiple independent variations. Second, it requires

no prior knowledge about spectral properties of components,

which removes the need to set cut-off frequencies.

Generally, SCICA works by transforming a time series such

that the statistical dependences between the output components

are minimized. It includes three steps: embedding, separation,

and recovery.

In the embedding step, an RSS segment

r = [r(1), r(2), ..., r(T )]� is mapped into an L × K
matrix V, which is expressed as

V =

⎛
⎜⎜⎜⎝
r(1) r(2) · · · r(K)
r(2) r(3) · · · r(K + 1)

...
...

. . .
...

r(L) r(L+ 1) · · · r(T )

⎞
⎟⎟⎟⎠ , (2)

where L = T − K + 1 is the embedding dimension and K
the number of consecutive delayed segments. The practical

minimum size for L is fs/fl [17], where fs denotes the

sampling frequency and fl the lowest frequency of interest

in RSS signals. SecureTag sets fl = 0.5 Hz and adopts a

larger L = �1.5 × fs/fl� to capture substantial information

from noisy and heavily correlated RSS traces.

The separation step searches for a transformation matrix W
that decomposes V into multiple independent components

V =
n∑

i=1

a1u
�
1 + ...+ aLu

�
L , (3)

where W = [a1, ...,aL]
−1 and {ui : ∀i} are the independent

components to be extracted. Note that we use the column

vector as the default format. In our implementation, we adopt

the FastICA algorithm [18] to derive W. FastICA has the

merits of fast and stable convergence, which is suitable to run

on resource-limited IoT devices.

FastICA treats it as an optimization problem, and iteratively

estimates W by searching the direction that maximizes the

non-Gaussianity of the projection U = [u1, ...,uL] = WV.

After deriving the transformation matrix W, the recovery

step maps U back to the measurement space using

Yi = aiu
�
i , (4)

where ui is the ith column of U. The delay matrix Yi

is projected to a time series component si by applying the

diagonal averaging [17], which is an inverse procedure of the

embedding step.

Fig. 5(c) and Fig. 5(c)(d) illustrate the obtained components

{si : ∀i}. The raw RSS signals are collected in an apartment

where one user walks with a smart wristband (as the on-body

wearable) and a smartphone in her pocket, while another user

walks with a wristband (as the off-body wearable). We observe
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Fig. 5. Illustration of signal decomposition.

that {si : ∀i} can be quite a few (around ten components) and

multiple components may associate with a single factor.

Based on the raw RSS signals are collected in our experi-

ments, we observe that {si : ∀i} can be quite a few (around

ten components) and multiple components may associate with

a single factor. Recall that we are interested in identifying

variations caused by direct path loss, environmental dynamics,

and body motion. Direct path loss exhibits lower frequencies

of variations than the other two factors, and can thus be

easily extracted from derived components. Though possessing

different variations, features of environmental dynamics and

body motion are harder to distinguish as both result in shad-

owing fading. Hence, SecureTag first extracts direct path loss

variations by grouping the components into two main clusters,

i.e., large-scale and small-scale variations, where large-scale

variations are contributed by direct path loss.

To derive large- and small-scale variations, SecureTag

groups variations based on agglomerative hierarchical cluster-

ing [19], which treats each component as a singleton cluster at

the beginning and then successively merges pairs of clusters

until all clusters have been merged into a single cluster. The

advantage of hierarchical clustering is that it stores interme-

diate results in the clustering procedure. For distance measure

in clustering, SecureTag employs Dynamic Time Warping

(DTW), a popular technique that computes an optimal match

between two time series with non-linear variations [20]. The

hierarchical clustering procedure successively merges clusters

or components with the smallest DTW distance. As the

spectral components of large-scale variations mainly fall into

the low frequency range due to the speed limitations of human

movement, SecureTag performs fast Fourier transform (FFT)

to each intermediate clusters and computes the low frequency

energy by summing all magnitudes in the low frequency range,

i.e., (0,1] Hz, that covers human movements. Then, the large-

scale variations cluster is set to be the earliest cluster that

maintains a certain ratio of low frequency energy to total

low frequency energy in the RSS segment. SecureTag sets

the low frequency range to (0,1] Hz. Fig. 5(e) and Fig. 5(f)

illustrate the large- and small-scale variations after clustering.

We observe that the small-scale variation of the on-body RSS

is smaller than that of the off-body RSS.

B. Propagation Pattern Matching
After applying signal decomposition, SecureTag first ex-

ploits signal fluctuations that are likely caused by body motion,

and removes them to derive residual small-scale variations.

Then, SecureTag matches the variations of an RSS segment to

on/off-body propagation pattern.
Motion-induced fluctuation removal. Recall that signal

fluctuations incurred by body motion overwhelm other on-

body variations (the walking part in Fig. 2). As we have no

knowledge of the users’ motion states, the motion-induced

signal fluctuations can be misleading in pattern matching. In

Fig. 5(e), we observe that the large-scale variation component

significantly fluctuates due to body motion, which is even larg-

er than the off-body large-scale variation as shown in Fig. 5(f).

To eliminate the impact of body motion, SecureTag sanitizes

large-scale variations by removing the periods that contain

motion-induced signal fluctuation with high probability.
From existing measurements [8], [15], [21], [22] and our

empirical study, we observe that

• Body movements induce significant fluctuations of path

gain and fading. Measurement results from many studies

[8], [15], [21] have shown that signal fluctuations incurred

by body motion are several times larger than those when

wearers are static. From RSS traces of an on-body device

collected from the carry-on smartphone, we observe that

the signal variations in the hand movement period is 2-3

times larger than those in the static period.

• The frequencies of body movements fall into a low

frequency range. Most frequencies of hand gestures fall

into [0.3, 4.5] Hz [22], and the frequencies of other body

movements are even lower. We observe that most large

variations during body motion fall between 0.5 Hz and

2 Hz.

SecureTag minimizes the impact of body motion by ap-

plying a low pass filter with cut-off frequency of 0.5 Hz to

the large-scale variation component, and treats the residual

components as variations incurred by environmental dynamics.
Multi-scale variation pattern matching. So far we have

obtained residual large-scale variations and small-scale vari-

ations. We then exploit the features in these two scales of

variations to match the RSS segment to the on/off- body

propagation pattern. Due to the fact that the main on-body

propagation form, i.e., the creeping wave, is insensitive to

environmental dynamics, we can discriminate among the prop-

agation patterns by examining the variations caused by these

two factors.



6

Specifically, we define a utility function that is a weighted

sum of the significance of these variations:

u = ασl + βσs, (5)

where α, β are the weights for the standard deviations σl, σs

of large- and small-scale variations, respectively.

To determine α, β, we adopt a heuristic approach by mea-

suring the standard deviations in on- and off-body traces.

The traces are collected over a short period of time (e.g.,

15 min) in different scenarios, including malls, apartments

and outdoor areas. We first compute the average standard

deviations {σ̄on
l , σ̄on

s } in on-body traces and {σ̄off
l , σ̄off

s } in off-

body traces. We allocate proportionally more weights to the

coefficient of which the standard deviations in the two traces

have a larger difference, that is,

α

β
=

σ̄on
l − σ̄off

l

σ̄on
s − σ̄off

s

. (6)

To match the RSS segment to on/off-body propagation pattern,

we compare u with a threshold as follows{
u ≥ α(σ̄on

l + σ̄off
l )/2 + β(σ̄on

s + σ̄off
s )/2 ⇒ off-body

u < α(σ̄on
l + σ̄off

l )/2 + β(σ̄on
s + σ̄off

s )/2 ⇒ on-body
.

(7)

C. Integration with Security Protocols

Our final protocol integrates with existing security protocols

in the upper layers to enable device authentication and defend

against active attacks. Sitting between upper-layer security

protocols and PHY signal processing, SecureTag conforms to

reasoning analogous to existing security protocols but differs

in that SecureTag takes into account the propagation patterns

to performance device authentication.

1) Authenticated Spoofing Mitigation: During device as-

sociation, an attacker may impersonate the legitimate IoT

device by broadcasting the same MAC address and even login

credentials. By thus the attack can associate with a legitimate

device and then launch spoofing attacks by injecting packets

which are completely identical to a legitimate device into the

network, as illustrated in Fig. 6.

SecureTag defends against the authenticated spoofing attack

by integrating propagation pattern check with authentication

protocol, as described below.

1) An IoT device triggers the association process by broad-

casting its ID in association request packets.

2) Another legitimate device hears the association request,

and send back an acknowledgement (ACK) frame to

request propagation pattern verification.

3) Upon receiving the propagation pattern verification re-

quest, the IoT device sends a series of empty packets.

4) The legitimate device determines whether the IoT device

is an on-body device by extracting patterns from the RSS

data of received packets according to the algorithm as

described in Section III-A and III-B.

5) If the propagation pattern matches the on-body pattern,

the legitimate device deems the IoT device as an authen-

ticated device, and establishes a communication link.

IoT Legitimate Device Attacker

Propagation 
Verification

Fig. 6. Authenticated spoofing mitigation.

IoT Legitimate Device Attacker

Propagation 
Verification

Jammed

Fig. 7. Jamming and replay mitigation.

2) Jamming and Replay Mitigation: An attack can launch

jamming and replay attack by equipping multiple antennas.

A multi-antenna attacker can jams the association packets

reception with one directional antenna and records the packet

with another antenna. The attacker then replays the recorded

packets to the legitimate device. After obtaining authorization

from the legitimate device, the attacker can inject its own data

into the network.

To defend against the jamming and replay attack, SecureTag

adds a propagation verification stage at the end of the associ-

ation, as illustrated in Fig. 7. As the propagation patterns of

the attacker fail to match the on-body patterns, SecureTag can

easily detect the attacker.

3) Authentication/Deauthentication Deadlock Mitigation:
There are various ways to launch Denial-of-Service (DoS)

attacks. A typical type of DoS attacks takes the vulnerability

before a secure link has been established. During the authen-

tication handshakes, an attacker can inject an authentication

request identical to the IoT device or an unauthenticated deau-

thentication notification, which leads to a protocol deadlock.

SecureTag allows the IoT device to send a challenge frame

once it receives an authentication request/unauthenticated

deauthentication notification that is not sent from itself. The

legitimate device then initiates a propagation verification stage



7

IoT Legitimate Device Attacker

Propagation 
Verification

Authentication 
handshake

Fig. 8. Jamming and replay mitigation.

similar to the authentication protocol, as show in Fig. 8.

IV. MICRO-BENCHMARK EXPERIMENTS

The target of micro-benchmark experiments is to evaluate

our system performance in different basic scenarios. Specifi-

cally, we evaluate our system when the user and the attacker

are in different motion states.

A. Experimental Setup

1) Implementation and Setup: We implement SecureTag

as an Android background service on a Samsung Galaxy S4

smartphone. The smartphone runs Android 4.4 firmware and

is equipped with a Bluetooth 4.0 chipset to communicate with

wearables at 2.4 GHz. The SecureTag service implemented

on the smartphone sends poll packets to connected wearables

using Android API, and log RSS measurements for analysis.

We use Fitbit Force, LifeSense Mambo, and Lumo Back

as wearables. SecureTag only runs a background service in

smartphones, and does not require any modifications to COTS

wearables. Since SecureTag relies merely on standard Blue-

tooth API in COTS devices, it can also be readily implemented

on other platforms such as iOS and Windows Phone.

Metrics. We use the following metrics to evaluate the

performance of our system.

• Attack mitigation rate. Attack mitigation rate is defined

to be the ratio of the number of attack attempts are

successfully detected and mitigated to total number of

attack attempts.

• False alarm rate. False alarm rate is the ratio of the

number of segments in which the on-body IoT device is

falsely recognized as an attacker to the total number of

segments.

Lab Environments. This experiment is conducted in a

10 m×10 m lab, whose layout is depicted in Fig. 9. The

lab consists of 36 cubics. There were 22 students in the

lab, most of them sitting in front of their desks, with only

Sub1

Sub2

                
            

                
            

Sub1's trajectory

Sub2's trajectory

Fig. 9. Floor plan of the lab environment for benchmark experiments.

a few students walking around during the experiments. We

conduct experiments on different days during working hours.

We collect a total of 4.5-hour traces for analysis.
2) Wearer Motion States: This experiment involves two

volunteers Sub1 and Sub2, with each of them wearing a smart

wristband, i.e., a Fitbit Force and a LifeSense Mambo. Sub1

puts the smartphone in her pocket when not seated. Sub1 may

hold the phone, or put it in a pocket. The polling interval is

set to 200 ms. We consider the following four scenarios.

• S1: Sitting side by side. Sub1 and Sub2 sit side by side

in the lab separated by an aisle of 2 m wide.

• S2: Walking side by side. Sub1 and Sub2 walks along

the corridor outside the lab. The distance between Sub1

and Sub2 is 2 m.

• S3: Sub1 walking. Sub1 walks along the aisle while Sub2

sits in the lab.

• S4: Sub2 walking. Sub2 walks along the aisle while Sub1

sits in the lab.

TABLE I
TP AND FP RATES UNDER VARIOUS SCENARIOS.

Scenarios S1 S2 S3 S4
Attack mitigation rate 0.885 1 0.981 1

False alarm rate 0.035 0.077 0.051 0.019

Results. Table I shows the attack mitigation rate and the

false alarm rate of our system under various scenarios. Se-

cureTag achieves high attack mitigation rate of over 98% for

all scenarios except S1. In S2-S4, there is at least one user

walking, and thus we can exploit both large and small-scale

variations to recognize the off-body attacker. The challenging

scenario is S1 where both users are stationary. In this scenario,

the small-scale variations for Sub2’s device are small, and thus

are easily recognized as on-body propagation. In real cases,

the chance is rare for a person to continuously remain static,

and thus SecureTag can still achieve a high detection accuracy.

Under all scenarios, the amount of legitimate traffic are

falsely recognized as attack attempts with rates of less than

8%. The false alarm rates in different scenarios have the
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following relation: S4 < S1 < S3 < S2. It reveals that when

the wearer remains stationary, it is easier to discern on-body

devices. This is because when the wearer walks, the hand and

leg movement induced fluctuations cannot be completely re-

moved, which compromises the propagation pattern matching

in S2 and S3.

In the following section, we conduct extensive experiments

to validate SecureTag in real environments.

V. EVALUATION IN REAL ENVIRONMENTS

In this section, we evaluate SecureTag in real environments

with uncontrolled body motion. The experiments involve 12

volunteer subjects, and are conducted in apartments, malls,

and outdoor areas.

TABLE II
BASIC INFORMATION OF VOLUNTEER SUBJECTS.

Sub. 1 2 3 4 5 6 7 8 9 10 11 12
Sex F F F F F M M M M M M M
Age 21 26 50 59 81 17 22 25 26 53 54 61

A. Experimental Setup

1) Enrolled Participants: We invite 12 volunteers, whose

basic information is listed in Table II, to participate in the

experiments. The subjects include a teenager, five college

students, five middle-aged people, and an elderly person. We

specifically select subjects to cover different age groups and

both genders. These subjects normally have different body

motion patterns. The elderly moves more slowly while younger

people move faster and are more active. The subjects also vary

in height and weight, ranging from 5 ft to 6 ft and 100 lbs to

190 lbs, respectively. The creeping wave propagations might

show different patterns on people of different shapes. We

intend to see whether body motion and shape affect the

experimental results.

2) Methodology: To validate SecureTag in real cases, we do

not control wearers’ movements as in controlled experiments.

We only ask volunteers to wear the devices, and then the wear-

ers continue their daily activities in different environments.

For example, in apartments, wearers may do housework, rest,

and dine as usual; while in malls, wearers walk and pick up

goods for shopping. Wearers are free to talk and make gestures

during the experiments. Unless otherwise stated, volunteers

wear the Fitbit Force or LifeSense Mambo on their wrists as

the wearables, and place the smartphone in a pocket or hold

it.

B. Evaluation in Different Scenarios

People wear devices in many different indoor and outdoor

areas. Indoor propagations significantly differ from outdoor

propagations, in terms of multi-path fading, shadowing, and

direct path loss. Moreover, the propagation patterns in different

indoor environments (e.g., different layouts and user densities)

are also versatile. It is thus important to evaluate the robustness

of SecureTag in various environments. We study the following

three representative scenarios. In each environment, two sub-

jects have wearables on and one of them carries a smartphone.

• Residential environment. We test our system in three

different-sized (i.e., 1000 ft, 1300 ft, and 1600 ft2)

apartments. 2-6 other people including family members

and visitors are co-located in the apartment. Wearers rest

on couch, watch TV, walk, cook, and clean floors during

our tests.

• Mall environment. This environment includes a small-

size supermarket (about 30 ft × 50 ft) and a large shop-

ping mall. The mall environments are very dynamic, with

people frequently passing by. The wearers go shopping

together, with a series of activities like walking, browsing,

and picking up the goods involved.

• Outdoor environment. The outdoor environment in-

cludes a plaza and a walkway. In the plaza, the two

wearers wander randomly, while in the walkway, the

two wearers walk side-by-side along the road. In both

cases, the wearers may chat with each other while making

occasional gestures.

We conduct the experiments over 14 different days, and

collect RSS traces of 25.01 hours, with 10 hours in the

residential environment, 6.26 hours in the mall environment,

and 8.75 hours in the outdoor environment.

1) Results: We evaluate the robustness of SecureTag in

different environments in Fig. 10 and Fig. 11. The results show

that the attack mitigation and false alarm rates are similar over

different environments when the RSS sample period ranges

from 100 ms to 300 ms, and the segment interval is no larger

than 30s.

Fig. 10 plots the attack mitigation and false alarm rates

of SecureTag under various RSS sample periods, where

the segment interval is fixed to 20 s. Higher sample rates

can provide finer-grained propagation information. SecureTag

achieves similar performance in the three environments. We

observe that for the sample rate of 100-200 ms, the attack

mitigation rate is higher than 94.8%, and the false alarm rate

is as low as below 7.4%. On-body IoT devices are likely to

be classified as attackers when the sample period is larger

than 400 ms, as the small-scale variations are mistakenly

recognized as large-scale variations with high probability due

to low RSS granularity. The results indicate that SecureTag

performs well with a reasonable sample period of less than

300 ms.

Then, we evaluate the performance of SecureTag under

various segment intervals in Fig. 11, where the sample period

is set to 200 ms. The false alarm rate is insensitive to variations

in segment intervals, and remains as low as below 7%; while

for the outdoor scenario, the attack mitigation rate drops lower

than 90% when the segment interval goes over 30 s. This is

because the off-body pattern is more complex than the on-body

pattern, which increases the difficulty to precisely decompose

longer off-body RSS time series. Besides, the optimal segment

interval that offers the lowest FP rate in the figure is 20 s, as

the RSS samples in the segments with intervals less than 20 s

are insufficient to perform pattern matching.
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Fig. 10. Attack mitigation and false alarm rates under various RSS sample periods in different environments.
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Fig. 11. Attack mitigation and false alarm rates under various segment intervals in different environments.

C. Whole-Day Evaluation

1) Setup: We evaluate SecureTag for whole-day (3-5 hours)

activities. In each experiment set, two co-located subjects (e.g.,

colleagues in the same office, hang-out friends) wear wearable

devices and one of them carries the smartphone that collects

the RSS traces. The wearers perform their daily activities

as usual, including hanging out in coffee shops, shopping,

driving, walking, dining, doing housework, office working, etc.

The evaluation lasts 12 days, with 51.46-hour traces in total

from 12 subjects.

2) Results: Fig. 12 presents the attack mitigation and false

alarm rates for all subjects. The RSS sample period and

segment interval are set to 200 ms and 20 s. SecureTag

achieves the average attack mitigation and false alarm rates of

96.13% and 5.64%, respectively. The worst attack mitigation

and false alarm rates are 85.52% and 11.68%, which validate

the effectiveness of SecureTag across different subjects.

Fig. 13 and Fig. 14 show the whole-day performance under

different RSS sample periods and segment intervals. Fig. 13

shows that for the sample rate of 100-200 ms, the attack

mitigation rate is as high as over 95.2%, and the false alarm

rate is lower than 6.9%. In Fig. 14, we observe that when the

segment interval is shorter 30 s, the attack mitigation rate as

high as over 95.2%, and the false alarm rate remains as low as

below 6%. The results are consistent with Fig. 10 and Fig. 11,

and demonstrate that the performance of SecureTag remains

stable for both short and long-term activities.

D. Performance For Different Wearing Positions

Different positions on the body affect the radio propagations

of wearables. We evaluate the performance for wearables

at different positions. We select three typical positions for

wearables, i.e., neck (smart necklace), wrist (smart wrist-

band/watch), and waist (smart waistband). In our experiments,

subjects wear a LifeSense Mambo around the neck to emulate

a smart necklace, a Fitbit Force on the wrist, and one Lumo

Back around the waist, as shown in Fig. 15(a). Two co-

located subjects are involved in this experiment to wear on-
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Fig. 12. Whole-day performance for different subjects.
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Fig. 15. Experiment setup of different wearing positions. The subject wears
three different wearables at neck, waist, and wrist, and carries a smartphone
in pocket.

and off-body devices. Subjects perform their daily activities

as described in the whole-day evaluation.

Fig. 15(b) shows that the detailed signal variations at

different positions are different, while the main feature still

stands: on-body propagation is very stable when the wearer is

static, yet varies significantly when the wearer moves. Table III

summarizes the results. SecureTag achieves 97.31%± 0.74%
attack mitigation rate and 7.29% ± 2.26% false alarm rate,

which validate its robustness against different wearing posi-

tions.

TABLE III
TP AND FP RATES FOR DIFFERENT POSITIONS.

Position Neck Waist Wrist
Attack mitigation rate 0.9804 0.9808 0.9657

False alarm rate 0.0955 0.0503 0.0588

VI. DISCUSSION

Eavesdropping attack. The eavesdropping attack can be

performed by a nearby passive receiver, who overhears the

communication packets sent by the legitimate device and the

IoT device. The scope of SecureTag is to provide protection

against active attackers who perform attacks such as DoS or

spoofing attacks by actively injecting unauthorized packets

into the network. Although SecureTag does not explicitly

prevent the eavesdropping attack, it can be mitigated by

incorporating with upper-layer encryption protocols. In partic-

ular, SecureTag can secure the initial handshake between two

legitimate devices during authentication. Then, the legitimate

devices start the encryption protocol in the upper layer to

secure the following data packets.

Energy consumption. We log the battery life of Fitbit

Force during our experiments to estimate energy consumption.

We connect the Fitbit to a Samsung S4 using the SecureTag

service, and observe that the fully-charged Fitbit lasts 10

days, during which the app collects RSS traces of 51 hours.

This suggests that we can expect a battery life of several

days when SecureTag is incorporated with the Fitbit app. For

other wearables such as the Mio heart rate watch, the energy

consumption would be even lower due to the short active

periods.

Smartphone placements. Similar to many smartphone-

based approaches [4], [6], [7], [23], we assume that each

wearer carries a dedicated smartphone or places it nearby (e.g.,

on the wearer’s desk only tens of centimeters away). When

the smartphone is off-body, it may mistakenly recognize on-

body wearables as off-body devices. To address this issue, the

smartphone can incorporate a self on-body checking scheme

that detects whether the device itself is on-body using motion

sensors, e.g., [4]. It is noteworthy that SecureTag applies

to other user-dedicated devices like smartwatches or user-

verification IoT device [24], which are worn by users most

of the time.
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Fig. 13. Whole-day performance under various sample periods.
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Fig. 14. Whole-day performance under various segment intervals.

VII. RELATED WORK

Sensor-based user and on-body authentication. The

prevalence of smart devices has spurred growing attempts

and extensive efforts in developing user recognition systems

for new applications and human-device interactions. Specific

sensors, including bioimpedance sensor [24] and capacitive

touch sensor [25], are widely used to discern which devices are

on a certain body. These systems capture individual differences

using different sensors, and build the basis for automatic

user verification, synchronization and profile loading. Instead

of using dedicated sensors, Ren et al. [4] and Srivastava

et al. [26] consider on-body smartphones as identifiers for

wearers, and realize the above goals by detecting devices that

are on the same body carrying a smartphone. In particular,

motion sensors are used to check if devices share similar

footstep patterns when the wearer walks. Xu et al. [6] take

one step further by securing on-body channels based on a

user’s gait patterns. However, motion sensor based approaches

are limited to walking scenarios and fitness related wearables.

Different from these systems, SecureTag aims to bring the

abilities of automatic user verification, synchronization and

profile loading to general COTS wearables using their built-

in wireless chipsets, which are equipped in most commercial

fitness, healthcare, and cognitive wearables of versatile form

factors.

Auxiliary channel based authentication. The shared se-

crets can be generated from user interactions, auxiliary chan-

nels, or authenticated with user actions or auxiliary channel.

Examples of the former include gesture-based authentica-

tion [27], [28] that encodes authentication information as

gestures defined by authenticators or users, and the techniques

that require users to simultaneously provide the same draw-

ings [29] or shaking trajectories [30]. The auxiliary channel

based approaches leverage a special channel to create shared

secrets. Many studies use ambient environments, such as

ambient sound [31], [32], or a combination of multiple envi-

ronments [33] as the proof of physical proximity. The auxiliary

channel itself is also leveraged as the source to generate shared

secrets. Normally, the two devices send messages to each

other within a short time to measure the channel between
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them. Electromyography (EMG) sensors are leveraged in [34]

to capture the electrical activities caused by human muscle

contractions, which are encoded into secret bits to pair devices

in contact with one hand. Qiao et al. [35] use the frequency

shapes of the wireless channel between two devices to generate

secret bits. Similarly, Liu et al. [36] use the channel sate

information (CSI) as shared secrets.
Motion tracking using wireless signals. Another body of

related work is motion tracking using wireless signals. These

studies exploit body radio reflection patterns for body motion

tracking or gesture recognition [37]–[39], activity discrimina-

tion [40], and speech recognition [41]. These systems require

Wi-Fi monitors [39]–[41] or even multi-antenna systems [37],

[38] to acquire fine-grained channel information (e.g., CSI).

However, They cannot be applied to wearable devices as most

COTS wearables adopt Bluetooth for energy-efficient commu-

nications. In wearable systems, only low rate (<10 pkt/s) RSS

traces are available.
Body-area network (BAN) channel characterization.

Many existing measurements have studied the propagation

model for on-body channels [8], [11], [13], [15], [21], [46].

These studies suggest that there exists substantial differences

in on-body and off-body propagations. Their measurement

results indicate that it is feasible to use radio propagations

to distinguish between on-body and off-body devices.

VIII. CONCLUDING REMARKS

This paper presents SecureTag, a low hardware cost ap-

proach for improve security protection for on-body IoT devices

by extracting the distinct creeping wave propagation features.

The insight is that on-body radio waves propagate mainly in

the form of creeping waves, which have unique characteristics

reflected in RSS variations. We demonstrate the generality of

SecureTag by evaluating it using different COTS wearables.

The experiments are conducted on 12 subjects of different

age groups, and the environments cover a lab, an office,

apartments, malls, coffee shops, plazas, walk ways, and so

on. The results show SecureTag is able to mitigate 96.13%

of active attack attempts while at the same time triggering

false alarms on merely 5.64% of legitimate traffic. SecureTag

is robust for devices worn in different positions, including the

neck, wrist, and waist.
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