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Abstract— We investigate the stable packet arrival rate region
of a discrete-time slotted random access network, where the
sources are distributed as a Poisson point process. Each of the
sources in the network has a destination at a given distance
and a buffer of infinite capacity. The network is assumed to
be random but static, i.e., the sources and the destinations are
placed randomly and remain static during all the time slots.
We employ tools from queueing theory as well as point process
theory to study the stability of this system using the concept of
dominance. The problem is an instance of the interacting queues
problem, further complicated by the Poisson spatial distribution.
We obtain sufficient conditions and necessary conditions for
stability. Numerical results show that the gap between the
sufficient conditions and the necessary conditions is small when
the access probability, the density of transmitters, or the SINR
threshold is small. The results also reveal that a slight change
of the arrival rate may greatly affect the fraction of unstable
queues in the network.

Index Terms— Interacting queues, Poisson bipolar model,
random access, stability, stochastic geometry.

I. INTRODUCTION
A. Motivation

IN LARGE scale wireless networks, concurrent transmis-
sions lead to interference between terminals. The random-

ness in the deployment of the transmitters makes accurate
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modeling and analysis of the interference complicated.
Recently, the introduction of the point process theory has
provided great convenience for modeling and analyzing the
performance of wireless networks [2]–[4]. However, most of
the analytical works assume that the terminals are backlogged,
i.e., that the terminals always have packets to transmit. In case
where each terminal provides a buffer for queueing, the prob-
lem becomes more practically relevant and more challenging.
For example, a primary problem is to study the stability of
the queues in the large scale network. It can be observed from
the above description that there are two issues of interest:
(a) the random arrival of the packets at the terminals; (b) the
noise, the fading, the interference, and the random access
protocol that affect the transmission of these packets. The
situation is complicated because it involves interacting queues,
i.e., the serving rate of each queue depends on the sizes of
all the queues. Most of previous works treat these two issues
separately. The approaches based on queueing theory focus on
the random arrival of the packets but ignore the physical layer
as well as the effect of noise and interference [5]–[9]. Other
approaches based on the multi-access information theory focus
on the physical layer and analyze the transmission process but
ignore the random arrival of packets [10]. The approaches
based on queueing theory are often used to analyze the
performance of scheduling algorithms, whereas the approaches
based on the multi-access information theory mostly employ
the assumption that all terminals are backlogged, and thus
the results obtained constitute upper or lower bounds for the
performance of certain schemes. The analysis of interacting
queues requires the combination of queueing theory and multi-
access information theory and is notoriously difficult.

The analyses of interacting queues have been mostly based
on the slotted ALOHA protocol with a simplified physical
layer [11]. In most of the works, a discrete-time slotted
ALOHA system with N terminals is considered. Each terminal
maintains a buffer of infinite capacity to store the incoming
packets. The time is divided into discrete slots with equal
duration, and in each time slot, each terminal attempts to
transmit its head-of-line packet with a certain probability if its
buffer is not empty. A collision occurs if two or more terminals
transmit simultaneously. When a collision occurs, all terminals
involved in the collision retransmit the packet in the next
time slot with the same access probability. For this simplified
system, the exact stability region was characterized for two
[5], [6] and three [7] terminals. When N > 3, only sufficient
conditions and necessary conditions for stability were obtained
[7], [12], [13]. In [14], the stability region of a queueing
network with dependent servers, described by the definition
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of subsets that can be activated simultaneously, is studied.
In [15], the tradeoff between the capacity and the exact end-
to-end queueing delay of cell partitioned networks is analyzed
and studied.

In practical wireless networks, the interference between
transmissions cannot be accurately modeled as collisions. The
interaction among the queues at the transmitters in practical
wireless networks is thus more intricate than the aforemen-
tioned discrete-time ALOHA system. In this work, we model
a large-scale wireless network using the Poisson point
process (PPP). Combined with the signal-to-interference-and
noise-ratio (SINR) model for successful reception, we explore
the effect of random traffic arrival and queueing on the stability
of large scale wireless networks.

B. Contributions

We combine queueing theory and stochastic geometry to
analyze the stability region of a static Poisson network,
in which the transmitters and the receivers are placed ran-
domly at the beginning and then remain static during all the
time slots. Compared with high-mobility networks in which
the nodes are regenerated independently in each time slot,
the static Poisson network is more challenging to analyze
since inherent correlations of the interference and signal
levels persist among different time slots, due to the common
randomness caused by the static locations of the nodes. Most
of the practical networks are approximately static because the
locations of the terminals cannot drastically change within
a short time period, and the statistics obtained by spatially
averaging over a large region in static networks are of great
significance. From the ergodicity of the PPP, the ensemble
averages obtained by averaging over the point process equal
the spatial averages obtained by averaging over an arbitrary
realization of the PPP over a large region. Intuitively, a direct
impact of the static characteristic is that if a transmission fails
at a previous time slot, there is an increased probability that it
will also fail in the next few time slots [16]. If each transmitter
maintains a buffer of infinite capacity to store the packets gen-
erated, the network becomes even more complicated to analyze
because of the interacting queues problem. We introduce the
notion of ε-stability, which is a generalization of stability
suitable for Poisson networks. By applying the concept of
dominance [5], [17], we derive sufficient conditions and nec-
essary conditions for ε-stability. Numerical results illustrate
the sufficient conditions and necessary conditions and reveal
how they vary with system parameters.

C. Related Work

Existing works about interacting queueing systems are
mostly based on the discrete-time slotted random access
systems in which the transmission fails when two or more
terminals transmit in the same slot. Previous analyses have
yielded only bounds to the stability regions [5]–[9]. Exact
stability regions have been characterized only for cases when
the number of terminals is two [5], [6] or three [7]. The
stability and delay of multi-access systems with an infinite
number of transmitters and with a simplified physical layer

were studied in [18]. The work in [19] studied the geometric
properties of the stability region of a slotted random access
system. All these works considered the collision-based model,
and the work in [17] investigated the exact stability region of
SINR-based two-user interference channel.

Applications of point process theory to analyze the per-
formance of wireless networks can be found in [2]–[4],
[10], [21], and [22]. The method is widely adopted in
the literature because it is analytically tractable and reflects
the randomness in the practical deployment of wireless
network [22], [23]. The works related to static Poisson
networks include the analysis of the interference corre-
lation [24], [25] and the local delay, which is defined as
the number of time slots required for a node to successfully
transmit a packet [26]–[29]. In this line of research, an implicit
assumption is that the networks are backlogged. In practice,
the packets arrive at each source randomly, and each source
maintains a buffer to store the packets. The stability and
delay of high-mobility networks were analyzed in [30] using
a combination of queueing theory and stochastic geometry.
In the high-mobility network, the queue sizes and the serving
rates are decoupled; however, practical networks are mostly
static at the time scale of the transmissions, and the decoupling
exploited in high-mobility networks does not apply.

The remaining part of the paper is organized as follows.
Section II describes the spatial distribution model, the arrival
process, and the access protocol. Section III gives the defi-
nition of stability. Based on the concept of dominance and
some related relaxations, Section IV and Section V establish
sufficient conditions and necessary conditions for stability.
Section VI analyzes provides asymptotic behaviors and numer-
ical results. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

In order to analyze the stability of a large scale
network, we adopt a simple yet general model. We consider
a discrete-time slotted random access system with transmit-
ters and receivers distributed as a Poisson bipolar network
[3, Definition 5.8], i.e., we model the locations of the transmit-
ters as a PPP � = {xi} ⊂ R

d of intensity λ. Each transmitter
is paired with a receiver at a fixed distance r0 and a random
orientation. In the analysis, we will condition on x0 ∈ � at
which the typical transmitter under consideration is located,
where r0 = |x0| is the distance of this point to the origin at
which the corresponding receiver is located (see Fig. 1). The
time is divided into discrete slots with equal duration, and
each transmission attempt occupies one time slot. We assume
that the network is static, i.e., the locations of the transmitters
and the receivers are generated once at the beginning and then
kept unchanged during all time slots.

We use the Rayleigh block fading model in which the
power fading coefficients remain static over each time slot,
and are spatially and temporally independent with exponential
distribution of mean 1. Let α be the path loss exponent and
hk,x be the fading coefficient between transmitter x and the
considered receiver located at the origin o in time slot k.
All transmitters are assumed to transmit at unit power. The
power of the thermal noise is set as W . We assume an SINR
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Fig. 1. A snapshot of the Poisson bipolar network with random access.

threshold model: if the SINR over a link is above a threshold θ ,
the link can be successfully used for information transmission
at spectral efficiency log2(1 + θ) bits/second/Hz.

Each transmitter has a buffer of infinite capacity to store the
packets generated. Each transmitter generates packets accord-
ing to a Bernoulli process with arrival rate ξ (0 ≤ ξ ≤ 1)
packets per time slot, i.e., ξ is the probability of an arrival in
any given time slot. In fact, the analysis and derivations in the
following are not limited to the discrete Bernoulli arrival of
packets since the time is slotted. For example, if the packets
obey Poisson arrival, they will be served at the beginning of
the next time slot if there is no packet waiting in the queue.
The arrival processes of different transmitters are independent.
In each time slot, each transmitter attempts to send its head-
of-line packet with probability p if its buffer is not empty.
We assume that the feedback of the status of each attempt
of transmission, either successful or failed, is instantaneous so
that each transmitter is aware of the outcome. If a transmission
attempt fails, the transmitter retransmits the packet in the
next time slot with probability p; on the other hand, if a
transmission attempt is successful, the transmitter removes the
packet from the buffer.

For any time slot k ∈ N
+, let �k be the set of transmitters

that are transmitting in that time slot. The interference at the
typical receiver located at the origin o in time slot k is

Ik =
∑

x∈�\{x0}
hk,x |x |−α1(x ∈ �k). (1)

When the typical transmitter is active, the SINR of the typical
receiver in time slot k is

SINRk = hk,x0r−α
0

W +∑x∈�\{x0} hk,x |x |−α1(x ∈ �k)
. (2)

In the proposed network model, each transmitter maintains
a queue with Bernoulli arrival. However, since the realiza-
tion of the PPP is irregular, the distances to the interferers
are different from the perspectives of individual receivers.
Therefore, there are always some transmitters that experience
poor performance (i.e., low success probability) while some

others that experience good performance (i.e., high success
probability). In view of this, even with the same arrival rate
for all transmitters in a large scale network, the queues of
the transmitters experiencing poor performance may become
unstable because of the low success probability. Therefore,
the characterization of the stability region of such networks is
important and challenging.

Since we condition on � having a point at x0, the rel-
evant probability measure of the point process is the Palm
probability P

x0 . Correspondingly, the expectation, denoted
by E

x0 , is taken with respect to the measure P
x0 . Whether the

transmission of the typical transmitter x0 is successful or not
is uncertain, and the randomness comes from four aspects:
the realization of PPP, the random access, the fading and
the random arrival of traffic. Let C k

� be the event that the
transmission of the typical transmitter x0 succeeds in time
slot k conditioned on the PPP �. C k

� is the intersection of two
events: that the transmission is scheduled by the random access
scheme and that the scheduled transmission is successful. Let
P

x0(C k
�) = P(SINRk > θ | �, x0 ∈ �) be the success

probability of the transmission of the typical transmitter x0 in
time slot k conditioned on the PPP �. P

x0(C k
�) varies with the

index k because the empty or non-empty status of the queues
at the interferers change over time, resulting in interference
variation. In the following discussions, we will show how the
stability depends on the statistical properties of P

x0(C k
�).

III. NOTION OF ε-STABILITY

For an isolated transmitter, by the Loynes theorem [31],
if the arrival process and the serving process are stationary,
the sufficient and necessary condition for stability is that the
average service rate is larger than the average arrival rate.
However, strict stability (i.e., all queues are stable) for a
large scale network is not achievable (except for the trivial
case of ξ = 0) since there always exist some transmitters
whose queues are unstable in the static Poisson network. Thus,
we introduce the notion of ε-stability as follows.

Definition 1: For any 0 ≤ ε ≤ 1, the ε-stability region Sε
is defined as

Sε
	=
{
ξ ∈ R

+ : P
x0

{
lim

K→∞
1

K

K∑

k=1

P
x0(C k

�) ≤ ξ

}
≤ ε

}
. (3)

Definition 2: The supremum of the ε-stability region Sε ,
i.e., ξc,ε � sup Sε, is called the critical arrival rate. The
network is ε-stable if and only if ξ ≤ ξc,ε .

Remark 1: P
x0
{

limK→∞ 1
K

∑K
k=1 P

x0(C k
�) ≤ ξ

}
is the

probability that the queue at the typical transmitter is unstable.
We declare the network to be ε-stable if the probability for
the queue at the typical transmitter being unstable is less
than a threshold ε (0 < ε < 1). The probability for the
queue at the typical transmitter being unstable is obtained
by averaging over the point process. Based on the ergodicity
of the PPP, i.e., the ensemble averages obtained by averaging
over the point process equal the spatial averages obtained
by averaging an arbitrary realization of the PPP over a large
region, the probability that the queue at the typical transmitter
is unstable equals the proportion of unstable transmitters in
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the network. Thus, a network is ε-stable implies that the
proportion of unstable transmitters in the network is less
than ε.

Deriving the ε-stability region Sε is equivalent to obtaining
the critical arrival rate ξc,ε, which is rather difficult because of
the interacting queueing problem. Therefore, in the following,
we obtain ξ s

c,ε and ξn
c,ε with ξ s

c,ε ≤ ξc,ε ≤ ξn
c,ε . Then,

ξ ≤ ξ s
c,ε and ξ ≤ ξn

c,ε correspond to a sufficient condition
and a necessary condition for ε-stability, respectively.

For example, consider a very simple system that consists of
only the typical transmission, i.e., the interference from other
transmitters in the system are ignored. The success probability
for that typical transmitter is p exp

(−Wθrα0
)
. By applying the

Loynes theorem, we get the condition for stability of the queue
at the typical transmitter ξ0 as

ξ ≤ ξ0 � p exp
(−Wθrα0

)
. (4)

In fact, all the sufficient conditions and necessary conditions
in the following sections can be expressed in the form of
ξ ≤ βξ0 with 0 ≤ β ≤ 1, where ξ0 captures the effect of noise
and random access at the typical transmission while β captures
the effect of the interference which is affected by the random
access at the interfering links.

IV. SUFFICIENT CONDITIONS

In order to derive sufficient conditions for ε-stability,
we consider a dominant system [5], [9], [17]. In the dominant
system the typical transmitter behaves exactly the same as in
the original system. However, for the other transmitters in the
dominant system, when the queue at a transmitter becomes
empty, it continues to transmit “dummy” packets with the
access probability p, thus continuing to cause interference to
other transmissions with probability p. So in the dominant
system, the queue size at each transmitter is always no smaller
than that in the original system, provided the queues start with
the same initial conditions. In the dominant system, the success
probability given � is the same for different time slots because
all transmitters always have packets to transmit, and the fading
and the scheduling result of random access are i.i.d. between
different time slots. The ε-stability region Sε is simplified
into Sε = {ξ ∈ R

+ : P
x0 {Px0(C�) ≤ ξ} ≤ ε

}
. By deriving the

ε-stability conditions for the dominant system, we get a
sufficient condition for the original system to be ε-stable.

Theorem 1: Given a slotted random access system with the
transmitters distributed as a PPP and with Bernoulli packet
arrivals, a sufficient condition for the system to be ε-stable is

ξ ≤ ξ s
c,ε, (5)

where ξ s
c,ε � sup Sε is given by

ξ s
c,ε = sup

{
ξ ∈ R

+ : 1

2
− 1

π

∫ ∞

0

1

ω

Im

{(
ξ0

ξ

) jω

e− jωCδ2 F1(1− jω, 1−δ; 2; p)
}

dω ≤ ε

}
,

(6)

with δ = 2/α, Cδ = pλπr2
0 θ

δ�(1 + δ)�(1 − δ),
and 2 F1(a, b; c; z) is the Gaussian hypergeometric function.

Thus, a lower bound on the critical arrival rate ξc,ε is ξ s
c,ε ,

i.e., ξc,ε ≥ ξ s
c,ε .

Proof: See Appendix A.
Remark 2: ξ s

c,ε given by (6) can be written as

ξ s
c,ε = ξ0 sup

{
β ∈ R

+ : 1

2
− 1

π

∫ ∞

0

1

ω

Im
{
β− jωe− jωCδ2 F1(1− jω, 1−δ; 2; p)}dω ≤ ε

}
,

(7)

where ξ0/ξ in (6) is replaced by 1/β, and β is the parameter
introduced after (4) that captures the effect of the interference.

As λ → 0, we have Cδ → 0, and (7) becomes

ξ s
c,ε = ξ0 sup

{
β ∈ R

+ : 1

2
+ 1

π

∫ ∞

0

sin(ω ln β)

ω
dω ≤ ε

}
.

(8)

Since
∫ 0
−∞

sin(πx)
πx dx = ∫∞

0
sin(πx)
πx dx = 1

2 , when ln β > 0,
the expression 1

2 + 1
π

∫∞
0

1
ω sin(ω ln β)dω evaluates to 1;

otherwise when ln β < 0 it evaluates to 0. Thus, we have

ξ s
c,ε = ξ0 sup

{
β ∈ R

+ : 1 (ln β > 0) ≤ ε
}

= ξ0, (9)

where 1 (·) is the indicator function. This is exactly the
case where the interference is ignored and only noise and
fading affect the transmission. Combined with the necessary
condition (4) ξ ≤ ξ0, we get the exact critical arrival rate
ξc,ε = ξ0 as λ → 0.

As θ → 0, the sufficient condition (7) becomes

ξ s
c,ε = sup

{
ξ ∈ R

+ : 1

2
− 1

π

∫ ∞

0

sin (ω ln p−ω ln ξ)

ω
dω ≤ ε

}

= p. (10)

As θ → 0, the necessary condition (4) becomes ξ ≤ p. Thus,
we get the exact critical arrival rate ξc,ε = p as θ → 0.

In the original system where the queues interact with each
other, if λ → 0, the interference is negligible, and a trans-
mission in the network is only affected by the thermal noise.
And if θ → 0, a transmission is almost surely successful if it
is scheduled. Therefore, in these cases, the serving processes
of the packets at different transmitters can be approximated
as decoupled and independent, and the critical arrival rates
above are intuitively reasonable.

The following corollary gives a closed-form sufficient con-
dition that is weaker than the one given by Theorem 1 but
easier to evaluate.

Corollary 1: Given a slotted random access system with the
transmitters distributed as a PPP and with Bernoulli arrivals,
a sufficient condition for the system to be ε-stable is

ξ ≤ ξ̃ s
c,ε, (11)

where ξ̃ s
c,ε � maxn∈N+ η(n), and

η(n) = ξ0ε
1
n exp

(
− πλδ(1 − p)δθδr2

0

n∑

i=1

((1 − p)−i − 1)
�(i − δ)�(n − i + δ)

�(i + 1)�(n − i + 1)

)
. (12)
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Thus, a closed-form lower bound on the critical arrival rate
ξc,ε is ξ̃ s

c,ε , i.e., ξc,ε ≥ ξ̃ s
c,ε.

Proof: For all n ∈ N
+, the cdf of P

x0(C�) is

P
x0
{
P

x0(C�) ≤ ξ
} = P

x0
{

e−n ln(Px0 (C�)) ≥ e−n ln ξ
}
. (13)

By applying the Markov inequality, we obtain

P
x0
{
P

x0(C�) < ξ
}
<

1

e−n ln ξ E

[
e−n ln(Px0 (C�))

]

= p−n exp
(
n ln ξ + nθrα0 W

)

×E

[ ∏

x∈�\{x0}

( p

1 + θrα0 |x |−α + 1 − p
)−n

]

=
( ξ
ξ0

)n
exp

(
− 2πλ

×
∫ ∞

0

(
1 −

( p

1 + θrα0 r−α + 1 − p
)−n)

rdr
)

=
( ξ
ξ0

)n
exp

(
2πλ

×
∫ ∞

0

(1+θrα0 r−α)n −(1+ (1− p)θrα0 r−α)n

(1 + (1 − p)θrα0 r−α)n
rdr
)
.

(a)=
( ξ
ξ0

)n
exp

(
2πλ

n∑

i=0

Ci
n(1 − (1 − p)i )

×
∫ ∞

0

(θrα0 r−α)i r
(1 + (1 − p)θrα0 r−α)n

dr
)

(b)=
( ξ
ξ0

)n
exp

(
πλnδ(1 − p)δθδr2

0

×
n∑

i=1

((1 − p)−i − 1)
�(i − δ)�(n − i + δ)

�(i + 1)�(n − i + 1)

)
.

(14)

where Ci
n = n!/(i !(n − i)!) = �(n +1)/(�(i +1)�(n − i +1))

is the binomial coefficient. (a) holds from the binomial expan-
sion and the exchange of summation and integral. (b) follows
from the relationship between the beta function B(x, y) =∫ 1

0 t x−1(1 − t)y−1dt and the gamma function and from the
fact that the term for i = 0 equals zero.

Since the above inequality holds for all n ∈ N
+, we have

Sε ⊃
⋃

n∈N+

{
ξ ∈ R

+ :
( ξ
ξ0

)n

× exp

(
πλnδ(1 − p)δθδr2

0

n∑

i=1

((1 − p)−i − 1)

× �(i − δ)�(n − i + δ)

�(i + 1)�(n − i + 1)

)
≤ ε

}
. (15)

Taking the supremum on both sides of (15) results in

sup Sε > max
n∈N+ η(n), (16)

where η(n) is given by (12). Letting ξ̃ s
c,ε = maxn∈N+ η(n),

we get ξ̃ s
c,ε < sup Sε = ξ s

c,ε , indicating that ξ ≤ ξ̃ s
c,ε is also

a sufficient condition for ε-stability which is “looser” than
ξ ≤ ξ s

c,ε .

Fig. 2. The simplified system which consists of two pairs of transceivers,
i.e., the typical transmission and the nearest interfering transmission in the
original system.

V. NECESSARY CONDITIONS

The simple condition given in (4) is weak because it ignores
the interference. In the following, we propose two approaches
to derive two different types of necessary conditions for
ε-stability. In the derivation of the type I necessary conditions,
we consider a simplified system in which only the effect of
the nearest interferer is considered. Since the interference is
reduced in the simplified system, a necessary condition for the
typical transmitter to be stable in the original system is that it is
stable in the simplified system. In the derivation of the type II
necessary conditions, we consider a modified favorable system
that drops the packets in the interfering transmitters that are not
scheduled by the random access or whose transmission failed.
Since the interference is not larger than that in the original
system and the packets will not accumulate at the interfering
transmitters, the ε-stability region will be a subset of that of
the original system.

A. Type I Necessary Conditions

First we derive type I necessary conditions and consider a
simplified version of the original system, in which only two
pairs of transmitters and receivers are considered. One pair
is the typical pair in the original system, whose transmitter
is located at x0 = (r0, 0) and the corresponding receiver y0 is
located at the origin o. The other pair is the pair containing
the nearest interferer. Let x1 = (rm cosϕ, rm sin ϕ) be the
location of the nearest transmitter, where rm is the distance
from the origin and ϕ is the angle. Let y1 = (rm cosϕ +
r0 cosψ, rm sin ϕ + r0 sinψ) be the location of the associated
receiver, where ψ is the angle between x1 and y1 (see Fig. 2).
ϕ and ψ are independent uniformly distributed random vari-
ables in [0, 2π]. The pdf of rm is

frm (r) = 2πλr exp
(
−πλr2

)
. (17)

A necessary condition for the original system to be ε-stable
is that the probability of the transmitter located at x0 in the
simplified system being unstable is less than ε. Notice that
we only need to consider the stability of the queue at the
transmitter x0, i.e., it does not matter whether the interfering
transmitter’s queue is stable or not. Since rm is a random
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variable, it is uncertain whether the queue at the transmitter
x0 is stable or not. However, if rm is given, the stability of the
queue at the transmitter x0 is determined. Therefore, we first
derive a sufficient and necessary condition for the transmitter
x0 to be stable when rm is given.

Consider a dominant system of the simplified system,
i.e., the transmitter x0 still transmits “dummy” packets when
its queue is empty, thus it keeps causing interference. Unlike
the transmitter x0, the nearest interfering transmitter x1 in the
dominant system behaves the same as in the original simplified
system. In fact, a sufficient and necessary condition for the
transmitter x0 in the simplified system to be stable is that it
is stable in the dominant simplified system. The sufficiency
claims that if the queue at x0 is stable in the dominant
simplified system, then it will be stable in the original simpli-
fied system. This is because the interference in the dominant
simplified system is larger than that in the original simplified
system, resulting in smaller success probability. The necessity
claims that if the queue at x0 is unstable in the dominant
simplified system, then it will be unstable in the original
simplified system. This is because when the queue at the
transmitter x0 in the dominant simplified system is unstable,
the queue size will grow to infinity without emptying with
non-zero probability. Notice that as long as the queue at
x0 is not empty, the dominant simplified system and the
original simplified system behave identically if starting from
the same initial condition, and the dominant simplified system
is indistinguishable from the original simplified system under
saturation. Thus the sample paths that do not visit queue
size zero in the dominant simplified system also occur in
the original simplified system, and they constitute a positive
measure of all sample paths. Therefore, the queue at x0 in
the original simplified system is also unstable. Combining the
two parts, the proof of the sufficiency and the necessity is
complete. Therefore, we only need to derive the sufficient and
necessary condition for the transmitter x0 to be stable in the
dominant simplified system. Based on these ideas, we get the
following lemma.

Lemma 1: For the simplified system with given ϕ,ψ, rm ,
the sufficient and necessary condition for the queue at the
transmitter x0 to be stable is

ξ ≤

⎧
⎪⎪⎨

⎪⎪⎩

ξ0
(1 + (1 − p)θs)(1 + θm)

p(θm − θs)+ (1 + θs)(1 + θm)
if r > rm

ξ0
1 + (1 − p)θm

1 + θm
if rs ≤ rm

(18)

where θs = θrα0 r−α
s , θm = θrα0 r−α

m and rs =√
(rm cosϕ + r0 cosψ − r0)2 + (rm sin ϕ + r0 sinψ)2.

Proof: See Appendix B.
Lemma 1 gives the sufficient and necessary condition for

the queue at the transmitter x0 to be stable with given ϕ,ψ, rm.
For the nearest interferer, ϕ,ψ, rm are random variables.
By applying the results in Lemma 1, we get the following
theorem.

Theorem 2: Given a slotted random access system with the
transmitters distributed as a PPP and with Bernoulli packet
arrivals, a type I necessary condition for the system to be

Fig. 3. The simplified system when ϕ = ψ = −π which consists of
two pairs of transceivers.

ε-stable is

ξ ≤ ξn1
c,ε � ξ0

⎛

⎜⎝1 − θp

θ +
(

F−1
Z (ε)

)α

⎞

⎟⎠, (19)

where Z = 1
r0

max{rm, rs} with FZ (z) being the cdf of Z , and
rs is defined in Lemma 1. Thus, a upper bound on the critical
arrival rate ξc,ε is ξn1

c,ε , i.e., ξc,ε ≤ ξn1
c,ε.

Proof: See Appendix C.
The necessary condition given by Theorem 2 is not in closed

form, and thus the necessary condition needs to be obtained
through numerical evaluation. In the following, we derive a
closed-form necessary condition by considering the further
simplified system with ϕ = ψ = −π (see Fig. 3). For a given
rm if the transmitter x0 in the simplified system is unstable
for ϕ = ψ = −π , it will also be unstable for other values of
ϕ and ψ . This is because when ϕ = ψ = −π , the interference
between the two pairs of transceivers is the smallest among
all ϕ and ψ . The following lemma gives the sufficient and
necessary condition for the queue at the transmitter x0 to be
stable when ϕ = ψ = −π with given rm .

Lemma 2: For the simplified system with ϕ = ψ = −π and
given rm (see Fig. 3), the sufficient and necessary condition
for the queue at the transmitter x0 to be stable is

ξ ≤ ξ0
(1 + (1 − p)θs)(1 + θm)

p(θm − θs)+ (1 + θs)(1 + θm)
, (20)

where θs = θrα0 r−α
s = θrα0 (rm + 2r0)

−α and θm = θrα0 r−α
m .

Proof: This lemma is a special case of Lemma 1 obtained
by setting ϕ = ψ = −π .

In Lemma 2, the case where ϕ = ψ = −π is considered.
For any other ϕ and ψ with given rm, (20) gives a necessary
condition for the queue at the transmitter x0 to be stable in
the simplified system. Since rm is a random variable and its
probability distribution is given by (17), (20) gives a necessary
condition for the queue at the transmitter x0 to be stable in the
simplified system. The simplified system only considers the
interference from the nearest transmitter; thus (20) will also
be a necessary condition for ε-stability of the original system.
By modifying the proof of Theorem 2 with rs = rm + 2r0,
we obtain the following corollary.

Corollary 2: Given a slotted random access system with
the transmitters distributed as a PPP and with Bernoulli
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packet arrivals, a closed-form type I necessary condition for
ε-stability is

ξ ≤ ξ̃n1
c,ε � ξ0

(
1 +

(
pθrα0(√

− ln(1−ε)
πλ + 2r0

)α + θrα0

)2)−1

.

(21)

Thus, a closed-form upper bound on the critical arrival rate
ξc,ε is ξ̃n1

c,ε , i.e., ξc,ε ≤ ξ̃n1
c,ε.

Proof: See Appendix D.

B. Type II Necessary Conditions

In the following, we derive the type II necessary conditions.
We consider a modified favorable system, in which the pack-
ets in the interfering transmitters that are not scheduled by
random access or whose transmission failed will be dropped
instead of being retransmitted; thus, an interfering transmitter
is active with probability pξ , decoupled from the status of
other transmitters.

Theorem 3: Given a slotted random access system with the
transmitters distributed as a PPP and with Bernoulli packet
arrivals, a type II necessary condition for the system to be
ε-stable is

ξ ≤ ξn2
c,ε � sup

{
ξ ∈ R

+ : 1

2
− 1

π
∫ ∞

0

1

ω
Im

{(
ξ0

ξ

) jω

e− jωξCδ2 F1(1− jω, 1−δ; 2; ξp)
}

dω ≤ ε

}
.

(22)

Thus, a upper bound on the critical arrival rate ξc,ε is ξn2
c,ε,

i.e., ξc,ε ≤ ξn2
c,ε.

Proof: See Appendix E.
Remark 3: If λ → 0 or θ → 0, the necessary condi-

tion in Theorem 3 coincides with the sufficient condition in
Theorem 1, indicating that the two conditions are tight for
small λ and θ .

The following corollary simplifies the type II necessary
condition using the Markov inequality.

Corollary 3: Given a slotted random access system with the
transmitters distributed as a PPP and with Bernoulli packet
arrivals, a type II necessary condition for the system to be
ε-stable is

ξ ≤ ξ0(1 − ε)−
1
t exp

(− ξCδ2 F1(1 − t, 1 − δ; 2; ξ p)
)
,

(23)

for all t > 0. For t = 1, we obtain a closed-form type II
necessary condition as

ξ ≤ ξ̃n2
c,ε � 1

Cδ
W
(

Cδξ0

1 − ε

)
, (24)

where W (z) is the main branch of Lambert W function. Thus,
a closed-form upper bound on the critical arrival rate ξc,ε is
ξ̃n2

c,ε , i.e., ξc,ε ≤ ξ̃n2
c,ε .

Proof: See Appendix F.
When deriving the type I necessary condition, we only

considered the effect of the nearest interferer and ignored

all other interferers, while in the derivation of the type II
necessary condition, we considered all interferers but ignored
the retransmission mechanism of the interferers. Whether the
type I or the type II necessary condition should be used
depends on whether the nearest interferer or the retransmis-
sion mechanism of the interferers takes the leading position
in affecting the transmission. For example, when the SINR
threshold θ is small and the access probability p is large,
the packets will be highly likely scheduled and transmit-
ted successfully, and no retransmission happens. Therefore,
the effect of the retransmission mechanism can be neglected,
and the type II necessary condition is better than the type I
necessary condition.

VI. DISCUSSION OF RESULTS

While the conditions given by the theorems are not in closed
form, the corollaries give closed-form results. In order to gain
insight from the results, we discuss the asymptotic behaviors
and compare the sufficient and necessary conditions through
numerical evaluations.

A. Asymptotic Behaviors

1) p Approaching 0: From Corollary 1, as p → 0, the opti-
mal n is nmax = ∞. Thus, we have

lim
p→0

ξ̃ s
c,ε = ξ0. (25)

From Corollary 2, we get

lim
p→0

ξ̃n1
c,ε = ξ0. (26)

From Corollary 3 and by noticing that limz→0 W (z)/z = 1,
we get

lim
p→0

ξ̃n2
c,ε = ξ0

1 − ε
. (27)

2) ε Approaching 0: Corollary 1 shows that ξ̃ s
c,ε approaches

zero exponentially with attenuation factor 1
nmax

as ε → 0.
From Corollary 2, we get the asymptotic result for ξ̃n1

c,ε
as ε → 0 as

ξ̃n1
c,ε = ξ0

(
1 +

(
pθrα0(√

− ln(1−ε)
πλ + 2r0

)α + θrα0

)2)−1

= (2α + θ)2

p2θ2 + (2α + θ)2
ξ0 + O

(
− ln(1 − ε)

πλ

)

+ α2α p2θ2(2α + θ)

((2α + θ)2 + p2θ2)2r0
ξ0

√
− ln(1 − ε)

πλ

= (2α + θ)2

p2θ2 + (2α + θ)2
ξ0

+ α2α p2θ2(2α + θ)

((2α + θ)2 + p2θ2)2r0
√
πλ
ξ0ε

1
2 + O(ε). (28)

(28) shows that ξ̃n1
c,ε approaches (2α+θ)2

p2θ2+(2α+θ)2 ξ0 with residual

�(ε
1
2 ).
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From Corollary 3, letting z0 = ξ0Cδ , we get the asymptotic
results for ξ̃n2

c,ε as ε → 0 as

ξ̃n2
c,ε

(a)= W (z0)

Cδ
+ W (z0) z0

Cδz0(1 + W (z0))

ε

1 − ε
+ O

(
ε

1 − ε

)

= W (z0)

Cδ
+ W (z0)

Cδ(1 + W (z0))
ε + O(ε2) (29)

where (a) follows from the Taylor expansion of W (z) at z0,

i.e. W (z) = W (z0) + W (z0)(z−z0)
z0(1+W (z0))

+ O((z − z0)
2) as z → z0.

(29) shows that ξ̃n2
c,ε approaches W (z0)

Cδ
with residual �(ε).

3) λ Approaching 0: From Corollary 1, as λ → 0, the
optimal n to maximize η(n) is nmax = ∞. The asymptotic
result for ξ̃ s

c,ε as λ → 0 is

ξ̃ s
c,ε = ξ0

(
1 − πλδ(1 − p)δθδr2

0 lim
n→∞

n∑

i=1

((1 − p)−i − 1)

× �(i − δ)�(n − i + δ)

�(i + 1)�(n − i + 1)
+ O(λ2)

)
, (30)

which reveals that ξ̃ s
c,ε approaches ξ0 with a factor of 1−�(λ).

From Corollary 2, we get the asymptotic result for ξ̃n1
c,ε as

λ → 0 as

ξ̃n1
c,ε = ξ0

(
1 − p2θ2r2α

0 πα

(− ln(1 − ε))α
λα + O(λ2α)

)
, (31)

indicating that ξ̃n1
c,ε approaches ξ0 with a factor of 1 −�(λα).

From Corollary 3 and by noticing that W (z) = z − O(z2)
as z → 0, we get the asymptotic results for ξ̃n2

c,ε as
λ → 0 as

ξ̃n2
c,ε = 1

1 − ε
ξ0

− 1

(1 − ε)2
pλπr2

0 θ
δ�(1 + δ)�(1 − δ)(ξ0)

2 + O(λ2),

(32)

which reveals that ξ̃n2
c,ε approaches 1

1−ε ξ0 with residual �(λ).

4) θ Approaching 0: When fixing the duration of each time
slot and varying θ , we multiply ξ̃ s

c,ε with the factor log2(1+θ)
since the size of each packet is changed. The factor log2(1+θ)
guarantees that when varying θ , arrival rates with different
packet sizes are compared fairly. From Corollary 1, as θ → 0,
the optimal n to maximize η(n) is nmax = ∞. We get the
asymptotic results for ξ̃ s

c,ε log2(1 + θ) as θ → 0 as

ξ̃ s
c,ε log2(1 + θ) = p

ln 2
θ + O(θ2). (33)

From Corollary 2, we get the asymptotic results for
ξ̃n1

c,ε log2(1 + θ) as θ → 0 as

ξ̃n1
c,ε log2(1 + θ) = p

ln 2
θ + O(θ2). (34)

From Corollary 3 and by noticing that limz→0 W (z)/z = 1,
we get the asymptotic results for ξ̃n2

c,ε log2(1 + θ) as
θ → 0 as

ξ̃n2
c,ε log2(1 + θ) = pθ

(1 − ε) ln 2
+ O(θ2). (35)

Fig. 4. Comparison of sufficient conditions and necessary conditions as
functions of p. The parameters are set as ε = 0.1, θ = 15dB, r0 = 1, W = 0,
α = 4 and λ = 0.05.

Therefore, ξ̃ s
c,ε log2(1 + θ) and ξ̃n1

c,ε log2(1 + θ) approach 0
linearly with the same slope coefficient p

ln 2 , while
ξ̃n2

c,ε log2(1+θ) approaches 0 linearly with the slope coefficient
p

(1−ε) ln 2 .

B. Comparison of Sufficient and Necessary Conditions

In this subsection, we numerically compare the sufficient
conditions and the necessary conditions derived in the previous
sections. By the Monte Carlo simulation, we also plot the
curves for the exact critical arrival rates, which are obtained
by gradually increase the arrival rate until the condition for
ε-stability of the network is not satisfied.

Fig. 4 shows the maximal arrival rates per the sufficient con-
ditions and necessary conditions as functions of p. As p → 0,
all curves converge to 0, as explained in subsubsection VI-A1.
As p increases, the curves for the non-closed-form sufficient
condition (solid line with circle marks) and for the type I non-
closed-form necessary condition (solid line with square marks)
first increase then decrease, because the success probability is
limited by the small access probability for small p and by the
large interference for large p.

Fig. 5 plots the maximal arrival rates per the suffi-
cient conditions and necessary conditions as functions of ε.
As ε → 0, the curves for the sufficient conditions and the
non-closed-form type II necessary condition approach 0, and
other curves approach different constant values. Fig. 5 reveals
that the curves do not depend strongly on ε. Since the gap
between the curves for the sufficient conditions and that for
the necessary conditions is not large, it can be inferred that the
critical arrival rate for actual ε-stability region does not change
much either when increasing ε. This observation indicates that
a slight change in the arrival rate ξ may greatly affect the
fraction of unstable queues in the network.

Fig. 6 plots the maximal arrival rates per the sufficient con-
ditions and necessary conditions as functions of λ. We observe
that all curves except the one for the closed-form type II
necessary condition converge to the same value. This is
because as λ → 0, the interference is negligible, and only
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Fig. 5. Comparison of sufficient conditions and necessary conditions as
functions of ε. The parameters are set as p = 0.5, θ = 15dB, r0 = 1, W = 0,
α = 4 and λ = 0.05.

Fig. 6. Comparison of sufficient conditions and necessary conditions as
functions of λ. The parameters are set as p = 0.5, ε = 0.1, θ = 15dB,
r0 = 1, W = 0 and α = 4.

the noise affects the transmission for the dominant system and
the simplified system; however, the curve for the closed-form
type II necessary condition does not converge to the same
value as λ → 0 because of the use of the Markov inequality
in the derivation.

Fig. 7 plots the maximal arrival rates per the sufficient con-
ditions and necessary conditions as functions of the distance
between the transmitter and the receiver r0. We observe that
the type I necessary condition is better than the type II nec-
essary condition for small r0 and worse for large r0. It can be
interpreted as that when the distance between the transmitter
and receiver r0 is small, the power of the useful signal is large,
and the interference from most of the transmitters is negligible
compared to the useful signal. Therefore, considering only the
nearest interferer, which is the case of the type I necessary
condition, will result in a better approximation when r0 is
small. On the other hand, when r0 is large, the effect of more
interfering transmitters cannot be negligible; thus, the type II
necessary condition will become better.

For the case where p and θ can be optimized, i.e., the
transmit probability p and the SINR threshold θ are designable

Fig. 7. Comparison of sufficient conditions and necessary conditions as
functions of r0. The parameters are set as p = 0.5, ε = 0.1, θ = 15dB,
λ = 0.05, W = 0 and α = 4.

Fig. 8. Comparison of sufficient condition and necessary condition as a
function of λ with optimal pair of (p, θ). The parameters are set as ε = 0.1,
r0 = 1, W = 0 and α = 4.

parameters that can be chosen to maximize the maximal arrival
rate times log2(1 + θ). To obtain realistic values, we choose θ
from [−20, 30] dB; then, Fig. 8 plots the maximal arrival
rates times log2(1 + θ) in terms of sufficient conditions and
necessary conditions as functions of λ when the optimal
p and θ are chosen.

As ε → 0, the type II necessary condition is better than
the type I necessary condition since the arrival rate can be
positive to make the network strictly stable (ε = 0) when only
the nearest interferer is considered, which is not realistic in
the original system. As p → 0, a packet is dropped with high
probability, and as λ → 0, the interference caused by the inter-
ferers except the nearest one is negligible; thus, in these cases,
the type I necessary condition is better. As θ → 0 and p → 1,
the dropping of packets rarely happens, and if r0 is larger
than the mean distance to the nearest interferer 1/(2

√
λ), other

interferers cannot be ignored; thus in these cases, the type II
necessary condition will be better. We summarize the results
in Table I, which lists some situations where it is preferable
to use one of the two types of necessary conditions.
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TABLE I

SOME SITUATIONS TO USE TYPE I OR TYPE II NECESSARY CONDITIONS

VII. CONCLUSIONS

In this paper, we investigated the stable packet arrival rate
region of a discrete-time slotted random access network with
transmitters and receivers distributed as a static Poisson bipolar
process. We introduced the notion of ε-stability, and obtained
sufficient conditions and two types of necessary conditions for
ε-stability. The asymptotic behaviors show that the obtained
sufficient conditions and necessary conditions converge to the
exact condition for ε-stability when some extreme system
parameters are chosen. The numerical results reveal that
the gap between the sufficient conditions and the necessary
conditions is small when the access probability, the density of
transmitters or the SINR threshold is small. The results also
reveal that a slight change in the arrival rate may greatly affect
the fraction of unstable queues in the network. Moreover, since
we have two kinds of necessary conditions, we provide some
guidance on whether to use the type I or type II necessary
conditions for a specific network scenario.

APPENDIX A
PROOF OF THEOREM 1

The success probability for the typical transmission condi-
tioned on � in the dominant system is denoted as P

x0(C�) =
pP

x0(SINR > θ | �), which is evaluated as

P
x0(C�) = pP

x0
(
hk,x0r−α

0 > θ (W + Ik) | �)
(a)= pE

x0
[
exp

(−θrα0 (W + Ik)
) | �]

= pE
x0
[

exp
(

− θrα0 W

−
∑

x∈�\{x0}
θrα0 hk,x |x |−α1(x ∈ �k)

)
| �
]

= ξ0

∏

x∈�\{x0}

(
pE

x0
[

exp
(− θrα0 hk,x |x |−α) | �

]
+ 1 − p

)

(b)= ξ0

∏

x∈�\{x0}

( p

1 + θrα0 |x |−α + 1 − p
)
. (36)

where (a) and (b) follow because the fading coeffi-
cients {hk,x } are i.i.d. exponential distributed random vari-
ables with unit mean. The moment generating function of

Y
	= ln (Px0(C�)) is

MY (s) = E

[
es ln(Px0 (C�))

]

= (ξ0)
s
E

[ ∏

x∈�\{x0}

( p

1 + θrα0 |x |−α + 1 − p
)s
]

= (ξ0)
s exp

(
−2πλ

∫ ∞

0

(
1−
( p

1 + θrα0 r−α + 1 − p
)s)

rdr
)

= (ξ0)
s exp

(
− sCδ2 F1(1 − s, 1 − δ; 2; p)

)
. (37)

The cdf of Y , denoted by FY (y) = P (Y ≤ y), follows from
the Gil-Pelaez Theorem [32] as

FY (y) = 1

2
− 1

π

∫ ∞

0

Im{e− jωy MY ( jω)}
ω

dω. (38)

The probability that the transmitter x0 in the domi-
nant system is unstable is given by the cdf of P

x0(C�),
which is

P
x0
{
P

x0(C�) ≤ ξ
} = P

x0 {Y ≤ ln ξ}

= 1

2
− 1

π

∫ ∞

0

Im{e− jω ln ξMY ( jω)}
ω

dω.

(39)

The condition for the queue at the typical transmitter in
the dominant system to be stable is P

x0 {Px0(C�) ≤ ξ} ≤ ε.
By combining (37) and (39), we obtain

1

2
− 1

π

∫ ∞

0

1

ω
Im
{
(ξ0)

jω exp
(− jω ln ξ

− jωCδ2 F1(1 − jω, 1 − δ; 2; p)
)}

dω ≤ ε. (40)

Therefore, we get the results in the theorem.

APPENDIX B
PROOF OF LEMMA 1

In the dominant simplified system, the transmitter x0
is active with probability p. The probability that the
nearest interfering transmitter x1 is scheduled and also
successful is

p1 = p2
P

{
h1r−α

0

h2r−α
s + W

> θ

}
+ p(1 − p)P

{
h1r−α

0

W
> θ

}

(a)= ξ0

(
p

1 + θrα0 r−α
s

+ 1 − p

)
. (41)

where h1 is the fading coefficient between the transmitter
and the receiver of the nearest pair of transceiver, and h2 is
the fading coefficient between the transmitter x0 and the
receiver y1. (a) follows because h1 and h2 are both exponen-
tially distributed. In the following, we divide the proof into
two cases, i.e., ξ ≥ p1 and ξ < p1.

1) The Case Where ξ ≥ p1: When ξ ≥ p1, the queue
at the nearest interfering transmitter x1 is unstable and will
never be empty, thus x1 will cause interference to the typical
transmission with probability p. Therefore, when ξ ≥ p1 the
probability that the transmitter x0 is scheduled and success-
ful is

p0 = p2
P

{
h3r−α

0

h4r−α
m + W

> θ

}
+ p(1 − p)P

{
h3r−α

0

W
> θ

}

= ξ0

(
p

1 + θrα0 r−α
m

+ 1 − p

)
. (42)

where h3 is the fading coefficient between the transmit-
ter x0 and the receiver y0, and h4 is the fading coeffi-
cient between the nearest interfering transmitter x1 and the
receiver y0.
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If rs > rm, by comparing (41) with (42), we have
ξ > p1 > p0, which implies that the queue at the trans-
mitter x0 is unstable if ξ ≥ p1. This can be explained
intuitively by the concept of “stability rank” [9], which states
that if a queue is unstable, the queues with higher rank
than the said queue are unstable as well. The interference
from the transmitter x0 to the receiver y1 is less than that
from the nearest interfering transmitter x1 to the receiver y0
when rs > rm, which means that the queue at x0 has higher
rank than the queue at x1; Thus, when the queue at the nearest
interferer x1 is unstable, the queue at the transmitter x0 is also
unstable.

If rs ≤ rm, the queue at x1 has higher rank than
the queue at x0. By comparing (41) with (42), we have
p0 ≥ p1, which implies that the queue at the transmit-
ter x0 is stable for p0 ≥ ξ ≥ p1 and unstable for
ξ > p0.

2) The Case Where ξ < p1: When ξ < p1, the queue of
the nearest interfering transmitter x1 is empty with probability
1 − ξ/p1 and is nonempty with probability ξ/p1. Therefore,
when ξ < p1 the probability that the transmitter x0 is
scheduled by random access and successful is

p′
0 = p2 ξ

p1
P

{
h3r−α

0

h4r−α
m + W

> θ

}

+
(

p(1 − p)
ξ

p1
+ p

(
1 − ξ

p1

))
P

{
h3r−α

0

W
> θ

}

= ξ0

(
pξ

p1

1

1 + θrα0 r−α
m

+ 1 − pξ

p1

)
. (43)

To make the queue at the transmitter x0 stable, the arrival rate
should satisfy ξ ≤ p′

0, i.e.,

ξ ≤ pp1

p1 exp
(
Wθrα0

)+ p2 − p2 1
1+θrα0 r−α

m

= p1

(
p

1 + θrα0 r−α
s

− p

1 + θrα0 r−α
m

+ 1

)−1

= ξ0

(
p

1 + θrα0 r−α
s

+ 1 − p

)

×
(

p

1 + θrα0 r−α
s

− p

1 + θrα0 r−α
m

+ 1

)−1

. (44)

If rs > rm, it can be verified that the right side of the
above inequality is less than p1. Therefore, if ξ < p1,
the queue at the transmitter x0 in the dominant simpli-
fied system will be stable only when the inequality (44) is
satisfied.

If rs ≤ rm, the right side of the above inequality is
larger than p1. Therefore, for the case ξ < p1, the queue
at the transmitter x0 in the dominant simplified system will be
stable.

Combining the cases ξ ≥ p1 and ξ < p1, the queue
at x0 in the dominant simplified system is stable if and

only if

ξ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ0

(
p

1 + θrα0 r−α
s

+ 1 − p

)

·
(

p

1+θrα0 r−α
s

− p

1+θrα0 r−α
m

+1

)−1

if rs > rm

ξ0

(
p

1 + θrα0 r−α
m

+ 1 − p

)
if rs ≤ rm

(45)

Thus, (45) also gives the sufficient and necessary condition
for the queue at the transmitter x0 to be stable in the original
simplified system.

APPENDIX C

PROOF OF THEOREM 2

According to Lemma 1, if rs > rm, from (45) we have

ξ ≤ ξ0

(
p

1 + θrα0 r−α
s

+ 1 − p

)

×
(

p

1 + θrα0 r−α
s

− p

1 + θrα0 r−α
m

+ 1

)−1

≤ ξ0

(
p

1 + θrα0 r−α
s

+ 1 − p

)
. (46)

Since Lemma 1 gives a sufficient and necessary condition
for the transmitter x0 to be stable in the simplified system
when ϕ,ψ, rm are given, comparing (45) and (46), we obtain
a necessary condition as

ξ ≤ ξ0

(
p

1 + θrα0 (max{rm, rs})−α + 1 − p

)
. (47)

According to (3) and Lemma 1, when ϕ,ψ, rm are random
variables, a necessary condition for the simplified system to
be stable is

ε ≥ P

{
ξ ≥ ξ0

(
p

1 + θrα0 (max{rm, rs})−α + 1 − p

)}

= P

{
1

r0
max{rm, rs} ≤

(
θ
ξ + pξ0 − ξ0

ξ0 − ξ

)1/α
}
. (48)

Let Z = 1
r0

max{rm, rs}, and denote the cdf of Z as FZ (z).
(48) can be written as

ε ≥ FZ

(
1

r0
max{rm, rs} ≤

(
θ
ξ + pξ0 − ξ0

ξ0 − ξ

)1/α
)
, (49)

which is equivalent to

ξ ≤ ξ0

⎛

⎜⎝1 − θp

θ +
(

F−1
Z (ε)

)α

⎞

⎟⎠. (50)

Therefore, we obtain the necessary condition in
Theorem 2.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 25,2020 at 09:18:21 UTC from IEEE Xplore.  Restrictions apply. 



2996 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 7, JULY 2016

APPENDIX D
PROOF OF COROLLARY 2

According to (3) and Lemma 2, rm is a random variable
in the original system. Thus, a necessary condition for the
original system to be ε-stable is

ε ≥
P

{
ξ≥

(
rαm +θrα0

)(
(rm +2r0)

α+(1−p)θrα0
)
ξ0(

rαm +(1+ p)θrα0
)(
(rm+2r0)

α+(1−p)θrα0
)+p2θ2r2α

0

}
.

(51)

Since f (x) = x
1+x is an increasing function, we obtain a

necessary condition for the original system to be ε-stable as

ε > P

{
ξ ≥

(
(rm + 2r0)

α + θrα0
)2
ξ0

(
(rm + 2r0)α + θrα0

)2 + p2θ2r2α
0

}

= P

{
(ξ0 − ξ)

(
(rm + 2r0)

α + θrα0
)2 ≤ ξp2θ2r2α

0

}
. (52)

Since the inequality ξ0 − ξ > 0 is satisfied from (4), we have

ε > P

{
rm ≤

(√
ξp2θ2r2α

0

ξ0 − ξ
− θrα0

)1/α

− 2r0

︸ ︷︷ ︸
A

}
. (53)

When A ≤ 0, the probability at the right side of the inequality
is zero; thus the above inequality (53) always holds. When
A > 0, using the probability distribution of rm given by (17),
we have

ε > 1 − exp
(
−πλA2

)
, (54)

and thus

0 < A <

√
− ln(1 − ε)

πλ
. (55)

Combining the cases of A ≤ 0 and A > 0, we have

(√
ξp2θ2r2α

0

ξ0 − ξ
− θrα0

)1/α

− 2r0 <

√
− ln(1 − ε)

πλ
. (56)

Solving the above inequality, we get the result in the
corollary.

APPENDIX E
PROOF OF THEOREM 3

By introducing the modified favorable system, an interfer-
ing transmitter is active with probability ξp. Similar to the
derivation of (36), we get

P
x0(C�)

= ξ0

∏

x∈�\{x0}

(
ξpE

x0
[

exp
(− θrα0 hk,x |x |−α) | �

]
+ 1−ξp

)

= ξ0

∏

x∈�\{x0}

( ξp

1 + θrα0 |x |−α + 1 − ξp
)
. (57)

Letting Y
	= ln (Px0(C�)), the moment generating function

of Y is

MY (s) = (ξ0)
s exp

(− ξsCδ2 F1(1 − s, 1 − δ; 2; ξ p)
)
.

(58)

The cdf of Y can be derived as follows by applying the
Gil-Pelaez Theorem given by (38).

FY (y) = 1

2
− 1

π

∫ ∞

0

Im{e− jωy MY ( jω)}
ω

dω. (59)

The probability that the queue at the typical transmitter in
the modified system is unstable is

P
x0
{
P

x0(C�) ≤ ξ
}

= P
x0
{
ln
(
P

x0(C�)
) ≤ ln ξ

}

= 1

2
− 1

π

∫ ∞

0

Im{e− jω ln ξMY ( jω)}
ω

dω. (60)

The condition for the queue at the typical transmitter in
the modified system to be stable is P

x0 {Px0(C�) ≤ ξ} ≤ ε.
By combining (58) and (60), we get the condition for the
queue at the typical transmitter in the modified system to be
stable as

1

2
− 1

π

∫ ∞

0

1

ω
Im
{
(ξ0)

jω exp
(− jω ln ξ

− jωξCδ2 F1(1 − jω, 1 − δ; 2; ξ p)
)}

dω ≤ ε. (61)

Therefore, we get the necessary condition for the original
system to be ε-stable.

APPENDIX F

PROOF OF COROLLARY 3

For all t > 0, by applying Markov inequality, we obtain

P
x0
{
P

x0(C�) < ξ
}

= P
x0
{
(Px0(C�))t < ξ t}

> 1 − ξ−t
E

[(
P

x0(C�)
)t]

= 1 − (ξ0)
tξ−t

E

[ ∏

x∈�\{x0}

( ξp

1 + θrα0 |x |−α + 1 − ξp
)t
]

= 1 − (ξ0)
tξ−t exp

(− ξ tCδ2 F1(1 − t, 1 − δ; 2; ξ p)
)
.

(62)

Solving the following inequality, we get a type II necessary
condition given by (23):

1 − (ξ0)
tξ−t exp

(− ξ tCδ2 F1(1 − t, 1 − δ; 2; ξ p)
) ≤ ε.

When t = 1, we obtain

P
x0
{
P

x0(C�) < ξ
}
> 1 − ξ0ξ

−1 exp(−ξCδ). (63)

Let W (z) be the main branch of Lambert W function,
defined by z = W (z)eW (z) for any complex number z. Solving
the inequality

1 − ξ0ξ
−1 exp(−ξCδ) ≤ ε, (64)

we get a closed-form type II necessary condition in the
corollary.
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