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Abstract

Meeting the diverse delay requirements 
of emerging wireless applications is one of the 
most critical goals for the design of ultra-dense 
networks. Although the delay of point-to-point 
communications has been well investigated using 
classical queueing theory, the delay of multi-
point-to-multipoint communications, such as in 
ultra-dense networks, has not been explored in 
depth. The main technical difficulty lies in the 
interacting queues problem, in which the service 
rate is coupled with the statuses of other queues. 
In this article, we elaborate on the main challeng-
es in the delay analysis in ultra-dense networks. 
Several promising approaches, such as introduc-
ing the dominant system and the simplified sys-
tem, to bypass these difficulties are proposed and 
summarized to provide useful guidance.

The Need for New Delay Analysis
The emergence of new latency-critical applications, 
such as intelligent manufacturing, remote control, 
auxiliary driving, and automatic driving, has led to a 
variety of delay requirements in wireless networks. 
Specifically, the end-to-end delay for the fifth gener-
ation (5G) is required to be less than 10 ms (about 
1/10 of the delay requirement for 4G), and for 
some special applications such as the tactile Internet 
[1], the delay is required to be less than 1 ms.

Ultra-dense networking is a promising archi-
tecture to meet the delay requirements of 5G 
wireless networks [2–4]. A theoretic analysis of 
the delay in ultra-dense networks is imperative to 
guide the practice. However, such delay is diffi-
cult to calculate since it is an intricate function 
of all links and is affected by a variety of factors 
including network load, medium access control 
(MAC), path loss, and so on.

In general, these factors can be classified into 
three aspects:
•	 Random arrival and queueing of packets at 

the terminals
•	 Spatial models for transmitters and receivers, 

which affect the path loss
•	 Channel fluctuations and transmission mech-

anisms, which affect the delivery of packets
Existing works on the delay analysis in net-

works typically focus on one or at most two of 
these aspects: analyses using queueing theory 
mainly evaluate scheduling algorithms, but usually 

ignore the interference and noise [5]; analyses 
based on stochastic geometry often ignore the 
queueing process and focus on the reliability or 
throughput in backlogged networks [6]; analy-
ses based on multiuser information theory usual-
ly evaluate the network capacity [7]. In order to 
accurately characterize the delay in ultra-dense 
networks, all aspects should be considered. Such 
a combination of all these methods, however, is 
well known to be notoriously difficult [8].

This article first reviews the treatment of delay 
in classical queueing theory and describes the 
interacting queues problem. Then the fundamen-
tal challenges that make the delay analysis difficult 
in ultra-dense networks are discussed. In order 
to handle these difficulties, several promising 
approaches are proposed and evaluated.

End-to-End Delay

Delay in this article refers to the end-to-end delay, 
which is the duration between generating a pack-
et at the transmitter and successfully decoding it 
at the receiver. Note that the end-to-end delay 
here is the delay within the wireless access net-
work, while the delay in the core wired networks 
is beyond the scope of this article. Generally, the 
end-to-end delay consists of the processing delay, 
the queueing delay, the transmission delay, and 
the propagation delay. The processing delay is 
the time it takes to generate the packets, which is 
about several microseconds. The queueing delay 
is the waiting time of a packet until it is served. 
The transmission delay is the time to successfully 
transmit a packet that is served. When a retrans-
mission mechanism is applied, the delay caused 
by waiting and retransmission is included in the 
transmission delay. The propagation delay is the 
duration between a packet leaving the transmit-
ter and reaching the receiver, which is calculated 
by dividing transmission distance by the speed 
of electromagnetic waves. In the multihop case, 
these four delay elements apply to each link. In 
ultra-dense networks, the processing delay and 
the propagation delay are negligible compared 
to the queueing delay and the transmission delay, 
which are the focus of this article.

Classical Queueing Theory

In classical queueing theory, Kendall’s notation, 
A/S/C, is applied to characterize the queueing 
problems, where A denotes the time intervals 
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between two adjacent arrivals, S describes the 
service process of packets, and C is the number 
of servers. The delay in classical queueing sce-
narios with only one server or where the service 
rates of different queues are independent is well 
studied. For instance, in the M/M/1 queueing 
problem (Fig. 1a), where M denotes Markovian, 
there is a single server, the arrival process of the 
packets is a Poisson process with arrival rate l, 
the service time of each packet is exponentially 
distributed with mean m, and thus the mean delay 
is 1/(m – l). However, the emergence of multiple 
queues and servers in ultra-dense networks sub-
stantially increases the difficulty of the queueing 
problem; moreover, the coupling of the service 
rates of different queues leads to the interacting 
queues problem.

Interacting Queues Problem

A typical interacting queues problem can be 
described as follows. Consider an ALOHA system 
with the time being divided into discrete slots with 
the same duration. Assume that there are N ter-
minals, and the arrival processes are independent 
for different terminals. Each terminal is active with 
a certain probability and delivers its head-of-line 
packet in each time slot if its queue is nonempty. 
If there are more than one simultaneous transmis-
sions, a collision occurs, and all involved packets 
will wait to be retransmitted. The essential diffi-

culty of the interacting queues problem lies in the 
fact that the service rate of each queue depends 
on the statuses of all other queues. Figure 1b 
shows an example of the interacting queues prob-
lem when there are only two terminals. If one 
queue is empty, the corresponding transmitter will 
not interfere the other link; thus, the service rate 
of the other link increases, and its queue becomes 
empty more quickly.

The delay for interacting queues is difficult 
to analyze, and existing work has only explored 
the stability issue, that is, whether the queues will 
grow without bounds. The stability region is the 
range of arrival rate that guarantees the stability of 
all queues. For the above system with N queues, 
the stability region has been found only for N = 
2 and N = 3 [9]. If the number of queues is finite 
and more than three, only sufficient or necessary 
conditions for stability are known. In addition, the 
interference in ultra-dense networks cannot be 
just modeled as collisions.

Challenges in the Delay Analysis in 
Ultra-Dense Networks

The delay is influenced by the queueing and ser-
vice processes of packets. The queueing process 
with multiple queues is different from the classical 
queueing problems due to the interacting queues, 
while the service process is directly determined by 
the MAC and the signal-to-interference-plus-noise  
ratio (SINR). The key challenges in the delay anal-
ysis are the following.

Challenge 1: Randomness in the Spatial Deployment

Delay is directly related to the service rate deter-
mined by the SINR, which is significantly affect-
ed by the inter-node distances. The distance 
between transmitter and receiver in the desired 
link determines the received power for the 
desired signal. Moreover, in practice, ultra-dense 
networks are interference-limited, that is, noise 
is negligible compared to interference, making 
interference a main factor that affects the SINR 
and, in turn, the delay. Notice that the sum 
interference power depends on the distances 
between interfering transmitters and the desired 
receiver. All these link distances are functions of 
the network geometry.

The spatial structure of heterogeneous ultra-
dense networks is by no means regular. The irreg-
ularity exists even in meticulously deployed macro 
base stations, due to the restrictions of locations 
of sites, the irregular spatial distribution of the 
traffic, and so on. For heterogeneous ultra-dense 
networks, the irregularity is more evident since 
the deployment of the dense access points is less 
elaborately planned and more likely to appear 
random. This kind of spatial irregularity is termed 
deployment randomness.

Traditionally, the spatial distribution of the 
nodes in cellular wireless networks is modeled by 
regular grids. For example, the hexagonal grid is 
used to characterize the cells generated by macro 
base stations. However, the regular grid does 
not capture the deployment randomness in ultra-
dense networks. Fortunately, a powerful mathe-
matical tool, point process theory, is available to 
handle the spatial modeling of the deployment 
randomness [10]. Point process theory represents 

Figure 1. a) Classical M/M/1 queueing problem; b) interacting queues problem 
with two queues; c) interacting queues problem in ultra-dense networks.
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the location of each node as a point in a spatial 
point process and permits the analytical character-
ization of a number of network metrics, including 
coverage probability, mean rate, and area spectral 
efficiency.

Challenge 2: Quasi-Static Deployment

While point process theory is widely used to 
model the topology of the wireless networks, 
the issue of delay has received considerably less 
attention. A main reason is that the delay is a 
long-term metric, while the coverage probability, 
the mean achievable rate, and so on are obtained 
by considering just a snapshot of the network. 
In order to discuss long-term metrics, the static 
nature of ultra-dense networks, that is, the fact 
that the locations of nodes remain unchanged 
for a relatively long time once they are deployed, 
needs to be considered. Ultra-dense networks 
are approximately static since the topology does 
not change drastically for a short time. From the 
receivers’ perspective, the locations of the inter-
ferers, determined in the deployment stage, are 
uncertain and may be considered as random.

Therefore, the static but random locations 
can be considered as the common randomness 
over different time slots, leading to temporal 
interference correlation. Such static networks are 
more challenging to analyze than high-mobility 
networks (where the topology is regenerated 
independently in each time slot) because inher-
ent correlations of signal and interference persist 
across different time slots.

Challenge 3: Dynamics in Channel and MAC
Channel Fluctuations: The delay depends on 

the SINR, which, in turn, determines the quality 
of the wireless channels. The channel gain in an 
ultra-dense network is determined by the path 
loss and fading. The path loss is influenced by 
factors like propagation medium (moist or dry 
air), link distances, terrain contours, and height of 
antennas. The channel fading, categorized as slow 
fading and fast fading, varies with time, geograph-
ical location, and propagation environment, and 
is often modeled as a stochastic process. Channel 
fluctuations may result in a loss of signal power 
and cause poor delay performance. Accurately 
modeling the effect of channel fluctuations on 
the delay is again difficult since a large number of 
links coexist, each of them experiencing indepen-
dent or dependent channel fluctuations.

MAC: The MAC determines how resources 
(time, space, bandwidth) are allocated to the links. 
The effect of the MAC on the delay is two-fold: 
First, it has a significant influence on the SINR at 
the receiver. Due to the MAC, all the transmitters 
are divided into two sets: the set containing all 
transmitters using a certain carrier, and the set con-
taining all other transmitters. Only the set of trans-
mitters using the same carrier at the same moment 
cause interference. Second, as part of the MAC, 
different scheduling policies, such as first-in first-out 
(FIFO), round-robin, and proportional fair, lead to 
different delay performance. Although the delay 
of various scheduling policies in classical queueing 
theory is well studied, it becomes complicated to 
analyze in ultra-dense networks where scheduling 
occurs across a large number of queueing nodes, 
usually in a distributed fashion.

Challenge 4: Interaction among Queues

The interacting queues problem in ultra-dense 
networks is more complicated than that in the 
aforementioned slotted ALOHA system (Fig. 1c). 
The main differences between the two systems 
can be attributed to the physical layer as well as 
the MAC layer.

Physical Layer: In a collision-based slotted 
ALOHA system, the transmission mechanism is 
simple: a packet transmission fails if two or more 
transmitters in the system are scheduled at the 
same time. However, in ultra-dense networks, the 
packet delivery process is not just determined by 
the busy statuses of all transmitters, but is also 
directly affected by the aggregated interference 
from all active links. Due to link adaptation or 
adaptive modulation and coding, the transmission 
rate is adjusted adaptively according to the SINR, 
which is related to the propagation environment 
of all links. Therefore, the queues in ultra-dense 
networks are coupled in a complicated way.

MAC Layer: MAC protocol in ultra-dense net-
works is usually much more sophisticated than 
ALOHA. For instance, in the downlink of a ultra-
dense network, each base station may serve mul-
tiple users, and user scheduling is introduced to 
guarantee that most users can be served fairly. If 
one separate queue is maintained for each user at 
the base station, there are many queues at each 
base station. In the multi-cell scenario, interac-
tion exists between queues of the same cell and 
queues of different cells (intra-cell and inter-cell 
interaction).

Promising Approaches
Network Stability: The First Step

Before the delay analysis, a key issue is to explore 
the stability of the queues in ultra-dense networks. 
Loynes’ theorem [11] indicates that the sufficient 
and necessary condition for the stability of a single 

Figure 2. Comparison of sufficient conditions and necessary conditions 
for e-stability with e = 0.1, l = 0.05 access points/m2, and the distance 
between transmitter and receiver is 1 m.
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queue is that the arrival rate is less than the ser-
vice rate. However, for the ultra-dense networks 
modeled by Poisson point processes (PPPs), the 
strict stability (all queues in the networks are sta-
ble) cannot be achieved since two nodes can 
be arbitrarily near each other, and the distance 
between nearby transmissions can be arbitrarily 
small. Therefore, there are always some links that 
experience strong interference, and consequent-
ly, their queues are unstable even with arbitrari-
ly small arrival rate. A weaker form of stability is 
e-stability, which indicates that the proportion of 
unstable queues among all queues is at most a 
predefined value e. Assume that the arrival rate of 
all queues in the network is the same. Then there 
is a critical arrival rate [12]: if the practical arriv-
al rate is smaller than the critical arrival rate, the 
network will be e-stable; otherwise, it will not be 
e-stable. Due to the interacting queues problem, 
obtaining the exact sufficient and necessary con-
dition for e-stability (i.e., finding the critical arrival 
rate) is difficult. In the following, we list several 
promising approaches.

Sufficient Conditions: To obtain sufficient con-
ditions for e-stability, a dominant system can be 
considered in which the transmission under con-
sideration operates just like that in the original 
system. Other transmitters in the dominant sys-
tem, when their queues are empty, will transmit 
“dummy” packets and continue to cause interfer-
ence. As a result, the queue lengths in the dom-
inant system are larger than that in the original 
system if the initial conditions of all queues in the 
two systems are the same. Sufficient conditions 
for e-stability of the original system are obtained 
by analyzing the conditions for e-stability of the 
dominant system.

Necessary Conditions: We describe two meth-
ods to obtain two kinds of necessary conditions 
for e-stability, which we name type I and type II 
necessary conditions. To obtain type I necessary 
conditions, we introduce a simplified system that 
just considers one nearest interferer. A necessary 
condition for a queue in the original system to be 
stable is that the queue in the simplified system 
is stable because the interference in the simpli-
fied system is reduced. To obtain type II neces-
sary conditions, a modified favorable system can 
be introduced in which a packet at interfering 
transmitters is dropped if it is not scheduled or 
fails to be delivered. Since the interference in the 
modified favorable system is smaller than that in 
the original system, the necessary conditions for 

e-stability of the original system can be obtained 
via deriving necessary conditions for e-stability of 
the desired link in the modified favorable system. 
Through introducing these two systems, whether 
an interfering transmitter is active or not is inde-
pendent of the statuses of the queues. This way, 
the interacting queues become decoupled.

Consider a network model given by Fig. 1c, 
where the nodes are modeled by a Poisson bipo-
lar process with intensity l. The time is slotted, 
and the packet arrival process is Bernoulli with 
arrival rate x. The access probability for each link 
in each time slot is p. A retransmission will be con-
ducted if a transmission fails in a certain time slot. 
Based on the above approaches, we derive suffi-
cient conditions as well as necessary conditions 
of e-stability and relax them to closed-form [12]. 
Figure 2 shows an example of the maximal arrival 
rates for sufficient conditions as well as necessary 
conditions when varying the access probability 
with random access, that is, each link is scheduled 
independently with certain probability. As the 
access probability approaches zero, packets in 
the modified favorable system are dropped with 
large probability. As the density of transmitters 
approaches zero, the interference is negligible. 
Therefore, applying type I necessary conditions is 
a more appropriate choice than type II necessary 
conditions in these cases. When e → 0, the type I 
necessary conditions become worse because the 
arrival rate may not be zero to achieve the strict 
stability (e = 0) of the simplified system, which is 
not consistent with the original system. As a sum-
mary, the choices of the appropriate type of nec-
essary condition for different cases is in Table 1.

Transmission Delay under Backlogged Assumption

One way to bypass the interacting queues prob-
lem and analyze the delay is to assume that all 
nodes are fully backlogged, that is, the transmit-
ters always have packets to deliver. In this way, 
the service process at a transmitter is decoupled 
from the statuses of all other queues. A mean-
ingful and practically relevant metric under the 
backlogged assumption is the transmission delay, 
which is the duration to successfully deliver one 
packet. The main components of the transmission 
delay are the retransmission delay and the waiting 
delay, which are closely related to the number of 
retransmissions of a packet. This type of delay, 
which ignores the queueing delay, is also called 
local delay [13].

As discussed above, the delay is greatly 
affected by the interference correlation in static 
ultra-dense networks, which may come from the 
correlated shadowing or fading. But more impor-
tantly, such interference correlation is caused by 
the spatial distribution of nodes as well as the 
MAC mechanisms because they decide on the 
activity pattern of interfering transmitters, which, 
in turn, determines the spatiotemporal structure 
of the interference.

In static deployments, the transmission delay 
for different links in the extreme case without fad-
ing and MAC mechanism is either one time slot 
or infinite. This is because when the realization of 
the point process modeling the nodes’ distribu-
tion is good, a transmission will always be success-
ful. On the contrary, when the realization of the 
point process is bad, a transmission will always be 

Table 1. Cases to choose type I or type II necessary 
conditions.

Some special cases Type

Parameter e for e-stability approaches zero Type II

Access probability approaches zero Type I

Density of transmitters approaches zero Type I

SINR threshold q approaches zero and access 
probability approaches one

Type II

Square of the desired link distance is much larger 
than reciprocal of the density of transmitters

Type II

One way to bypass 

the interacting queues 

problem and analyze 

the delay is to assume 

that all nodes are fully 

backlogged, that is, 

the transmitters always 

have packets to deliver. 

In this way, the service 

process at a transmitter 

is decoupled from the 

statuses of all other 

queues.
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failed, resulting in infinite delay. Thus, the events 
for successful transmissions in different time slots 
are completely correlated (one successful trans-
mission indicates successful transmissions in all 
time slots, and vice versa), resulting in infinite 
average transmission delay.

Figure 3 shows the mean and variance of the 
transmission delay with random access and back-
logged nodes. The mean transmission delay might 
become infinite under some system configura-
tions — a phenomenon named wireless conten-
tion phase transition. The variance reflects the 
delay jitter (delay fluctuation). For real-time appli-
cations like VoIP, a large variance of delay may 
cause a severe problem. This approach has also 
been applied to analyze the transmission delay in 
heterogeneous cellular networks [14].

Single-Hop Delay: Bounding Approaches

The total single-hop delay is composed of the 
queueing delay and the transmission delay. In a 
static ultra-dense network, given the locations of 
transmitters and receivers, the success probabil-
ities for different links are different, resulting in 
different mean delays for different links. If we con-
sider the mean delays of all links, a cumulative 
distribution function (cdf) of the mean delays of 
all queues can be obtained, which is a suitable 
metric to characterize the delay of the overall 
ultra-dense network.

Analytically, for ergodic point process models, 
the cdf obtained through the spatial statistics can 
be obtained by considering the typical queue. 
However, obtaining the exact cdf is intractable 
due to the interacting queues problem. Several 
promising approaches to bound and approximate 
this cdf are described as follows.

Lower Bound: Considering the same dominant 
system introduced when deriving sufficient condi-
tions for e-stability, the queue length for each link 
is larger than that in the original system, leading to 
smaller SINR and larger delay. Therefore, the cdf 
obtained under such relaxation is a lower bound 

for the cdf of the mean delays of all queues in the 
original system.

Upper Bound: Considering the same modified 
favorable system introduced when deriving type 
II necessary conditions, the interference is smaller 
than that in the original system, leading to a small-
er delay compared to that in the original system. 
Accordingly, the corresponding cdf is an upper 
bound for the cdf in the original system.

Approximation: To approximate the cdf, all 
transmitters may be assumed to be busy inde-
pendently with the same busy probability, which 
can be obtained by solving a fixed-point problem 
as in [15]. The fixed-point problem is established 
by taking the busy probability of all interfering 
transmitters as a variable and expressing the 
busy probability of one desired link, which then 
equals the originally assumed busy probability of 
the interfering transmitters. Having obtained the 
approximated busy probability, the cdf can then 
be approximately evaluated.

By applying the proposed bounding and 
approximating techniques, the service rate is 
decoupled from the statuses of all queues at the 
interfering transmitters, and analysis of the end-
to-end delay becomes tractable. Figure 4 shows 
a comparison of the bounds for the cdf of the 
mean delay for different setups.

Conclusion and Future Research
The coupling between traffic and network services 
becomes increasingly strong as ultra-dense net-
works become a reality. This type of coupling gives 
rise to the interacting queues problem, which is 
the key obstacle for delay analysis in ultra-dense 
networks. This article proposes several promising 
approaches toward an understanding of the stabili-
ty and delay issues in ultra-dense networks.

Much work is still called for in this area, both 
on the fundamental theory to handle more sophis-
ticated MAC protocols and on meaningful models 
to fit practical scenarios. Some interesting aspects 
that need further investigation are as follows:

Figure 3. Mean and variance of the transmission delay with random access and backlogged assumption. 
The distance between transmitter and receiver is 5 m, l = 0.01 access points/m2, and q is the SINR 
threshold.
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•	 Scheduling, which increases the complexity 
of the interacting queues, is a crucial mech-
anism that affects delay in ultra-dense net-
works. More effective approaches should 
be investigated in order to analyze the 
impact of a sophisticated scheduling mech-
anism.

•	 Traditional traffic analyses focus on modeling 
either the spatial distribution of the traffic or 
the temporal arrival process of packets. The 
methods discussed in this article are prom-
ising in jointly handling the spatiotemporal 
arrival of traffic.

•	 Delay for more complicated yet realistic 
point process models, such as cluster pro-
cesses and hard core processes, also needs 
to be explored. New approaches are also 
needed to obtain more accurate results for 
stability and delay distribution.
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This article proposed 

several promising 

approaches toward an 

understanding of the 

stability and delay issues 

in ultradense networks. 

Much work is still called 

for in this area, both on 

the fundamental theory 

to handle more sophis-

ticated MAC protocols 

and on meaningful 

models to fit practical 

scenarios.
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